

Level 3 Project Study Plan

2022 Euclid/Dugway Storage Tunnels Post-Construction Monitoring

Table of Contents

List c	of Acronyms	2
(1)	Objectives	3
(2)	Point/Nonpoint Sources	4
(3)	Sampling Locations	4
Figui	re 1. Map of Study Area	7

2022 Euclid/Dugway Storage Tunnels Post-Construction Monitoring April 25, 2022

List of Acronyms

DEIRS	Dugway East Interceptor Relief System
DSCRS	Dugway South Relief and Consolidation Sewer
DST	Dugway Storage Tunnel System
DWIRS	Dugway West Interceptor Relief System
EAST 140 th RCS	East 140 th St Relief and Consolidation Sewer
ECT	Euclid Creek Storage Tunnel System
EPA	Environmental Protection Agency
GPS	Global Positioning System
HUC	Hydrologic Unit Code
IBI	Index of Biotic Integrity
ICI	Invertebrate Community Index
LBRS	Lakeshore Boulevard Relief System
MIwb	Modified Index of Well-Being
NEORSD	Northeast Ohio Regional Sewer District
QHEI	Qualitative Habitat Evaluation Index
RM	River Mile
USGS	United States Geological Survey
WQIS	Water Quality & Industrial Surveillance

2022 Euclid/Dugway Storage Tunnels Post-Construction Monitoring April 25, 2022

(1) Objectives

The objective of this project is to conduct environmental monitoring on several direct tributaries to Lake Erie (Euclid Creek, Dugway Brook, Green Creek, Nine Mile Creek, and Shaw Brook) to provide post-construction data related to the completion of several Northeast Ohio Regional Sewer District (NEORSD) Project Clean Lake construction projects: specifically, the Euclid Creek Storage Tunnel Project System (ECT) and the Dugway Storage Tunnel Project System (DST). The ECT System includes the Lakeshore Boulevard Relief Sewer (LBRS), including regulator upgrades and the DST System includes: Dugway West Interceptor Relief System (DWIRS), Dugway East Interceptor Relief System (DEIRS), the E. 140th St. Relief and Consolidation Sewer (EAST 140th RCS), the Dugway South Relief and Consolidation Sewer (DSRCS) and regulator upgrades.

The tunnel systems are integral parts of the larger gray infrastructure capital improvements of Project Clean Lake. The project also includes significant investments in large-scale green infrastructure. The project is aimed at reducing combined sewer overflow (CSO) events and increasing the storage capacity of the collection system. The ECT and DST Systems focus specifically on these impacts in the central and east side of the service area including Cleveland, East Cleveland, and Bratenahl. Construction of this portion of Project Clean Lake began in 2009 and was completed in 2020.

The results of this study will be compared to environmental monitoring completed from 2009-2021. Data collected prior to the construction and implementation of Project Clean Lake control measures will be compared to post-construction data to evaluate how a reduction of bacterial loading and combined sewer overflow volumes might impact the water quality of the receiving waters.

Data collection will consist of wet and dry weather water chemistry samples at all sites to assess the chemical and bacteriological water quality conditions. Samples will be collected at least three times and analyzed for all parameters. Additional samples will be collected and analyzed for *Escherichia coli* and total phosphorus to ensure that at least five samples each are collected under both wet and dry weather conditions. Fish, macroinvertebrate, and habitat assessments will also be conducted at select sites where the streams are not culverted and are accessible to field monitoring equipment (see below). These results will be evaluated using the Ohio Environmental Protection Agency's (EPA) Qualitative Habitat Evaluation Index (QHEI), Index of Biotic Integrity (IBI), Modified Index of Well-being (MIwb) and Invertebrate Community Index (ICI). An examination of the individual metrics that comprise these indices will be used in conjunction with water quality data to identify impacts to the biotic communities. Water chemistry data will also be compared to the Ohio Water Quality Standards to determine attainment of applicable uses (Ohio EPA, 2021)¹.

-

¹ See Appendix H for a list of references.

2022 Euclid/Dugway Storage Tunnels Post-Construction Monitoring April 25, 2022

Please see "2022 NEORSD Watershed Monitoring Study Plan" for further details regarding study activities and supporting documentation.

(2) Point/Nonpoint Sources

Table 1. Point and Nonpoint Sources					
Point Sources	Nonpoint Sources				
Storm Sewer Outfalls	Urban runoff				
Combined Sewer Overflows	Spills				
Sanitary Sewer Overflows	Stormwater surface runoff				
Illicit Discharges					
Failing Septic Systems					

A map has been provided to show point sources that may be influencing the water quality at each sample location (Figure 1). These sources of pollution, along with the nonpoint sources listed in Table 1 above, may be impacting the health of the fish and benthic macroinvertebrate communities in the target streams and will need to be considered when evaluating changes to these communities with respect to the impact of the Euclid Creek and Dugway Storage Tunnel Systems including associated interceptors and regulators (ECT: LBRS & various regulators, DST: DWIRS, DEIRS, EAST 140th RCS, DSCRS, & various regulators).

(3) Sampling Locations

The following sample locations will be surveyed during the 2022 field season (Table 2). Locations within culverted sections of these streams will be assessed for water chemistry only. Other locations will be assessed for water chemistry, habitat, electrofishing, and macroinvertebrates. Macroinvertebrate and water chemistry collection sites are located within each electrofishing zone, indicated by river mile, unless otherwise noted. GPS coordinates are recorded at the downstream end of each electrofishing zone.

	Table 2. 2022 Sample Locations							
Location	Latitude	Longitude	River Mile	Drainage Area	Description	Station ID	HUC 12	Purpose
Euclid Creek	41.5658	-81.5358	2.70	21.9	Upstream of Euclid Avenue	N/A	04110000503	Evaluate water chemistry, fish, habitat, and macroinvertebrates
Euclid Creek	41.5738	-81.5470	1.65	22.3	Upstream of St. Clair Avenue	504250	041100030503	Evaluate water chemistry, fish, habitat, and macroinvertebrates
Euclid Creek	41.5833	-81.5594	0.55	23.1	Downstream of Lakeshore Boulevard	F01A47	041100030503	Evaluate water chemistry, fish, habitat, and macroinvertebrates
Green Creek	41.5778	-81.5676	N/A		Humphrey Park	N/A	041100030504	Evaluate water chemistry
Nine-Mile Creek	41.5457	-81.5523	3.34	0.7	Site 10	301435	041100030504	Evaluate water chemistry, fish, habitat, and macroinvertebrates
Nine-Mile Creek	41.5575	-81.5991	0.40	3.1	Upstream of Lakeshore Boulevard	301432	041100030504	Evaluate water chemistry, fish, habitat, and macroinvertebrates
Shaw Brook	41.5554	-81.6018	0.40	0.04	Upstream of Lakeshore Boulevard	302509	041100030504	Evaluate water chemistry, fish, habitat, and macroinvertebrates

2022 Euclid/Dugway Storage Tunnels Post-Construction Monitoring April 25, 2022

Dugway Brook East Branch	41.5218	-81.5850	N/A		Forest Hills Park Forest Hills Blvd. and Forest Hills Ave. Upstream of DEIRS	N/A	041100030504	Evaluate water chemistry post DEIRS Alignment
Dugway Brook East Branch	41.5479	-81.6076	N/A		East 110 th Street Salt Dome Downstream of DEIRS	N/A	041100030504	Evaluate water chemistry post DEIRS Alignment
Dugway Brook Main Branch	41.5509	-81.6086	0.37	6.3	North of Lakeshore Boulevard North of NEORSD Netting facility	301430	041100030504	Evaluate water chemistry, fish, habitat, and macroinvertebrates
Dugway Brook West Branch	41.5122	-81.5905	2.40	2.6	Lakeview Cemetery downstream of NEORSD flood control dam Upstream of DWIRS	301431	041100030504	Evaluate water chemistry, fish, habitat, and macroinvertebrates post DWIRS Alignment
10658 Dupont Ave	41.5446	-81.6118	N/A		*Dugway Brook, West Branch	N/A	041100030504	Evaluate water chemistry post DWIRS Alignment

^{*}This is the furthest downstream access location of all regulators tributary to the West Branch of Dugway Brook. It should be noted that there are two regulators (D-61 & D-03A) downstream of this location that will not be captured during sample collection as there is no access to the culvert downstream of this location.



Figure 1. Map of Study Area

2022 Euclid/Dugway Storage Tunnel Post-Construction Monitoring

Legend

- Sample Locations
- Streams
- **Local Sewer Pipe**
- Combined Sewer
- CSO Overflow
- Culverted Stream
- Force Main
- Sanitary Sewer
- Sanitary Overflow Storm Sewer
- District Facility
- District CSO Permit Point

District Sewer Pipe District Pipe

- District CSO Overflow Pipe
- District Force Main
- = District Maintained

Mile

This information is for display purposes only. The Northeast Ohio Regional Sewer District (NEORSD) makes no warranties, expressed or implied, with respect to the accuracy of and the use of this map for any specific purpose. This map was created to serve as base information for use in Geographic Information Systems (G15) for a variety of planning and analysis purposes. The NEORSD expressly disclaims any liability that may result from the use of this map. For more information, please contact. NEORSD G15 Services, 3900 Enclid Avenue, Cleveland, Ohio 44115—(216) 881-6600—G15@neorad.org

2022 NEORSD Watershed Monitoring Study Plan

Table of Contents

List of	Acronyms	2
(3)	Parameters Covered	3
(4)	Field Collection and Data Assessment Techniques	4
(5)	Stream Flow Measurement	6
(7)	Schedule	6
(8)	QA/QC	7
(9)	Work Products	9
(10)	Qualified Data Collectors	9
(11)	Contract laboratory contact information	. 11
(12)	Copy of ODNR collector's permit	. 11
(13)	Digital Catalog Statement	. 11
(14)	Voucher Specimen Statement	. 12
(15)	Sample Location Statement	. 12
(16)	Additional L3 Data Collector Statement	. 12
(17)	Trespassing Statement	. 13
Appen	ndix A. Field Forms	. 14
Appen	ndix B. Parameter Information	25
Appen	ndix C. Meter Specifications	. 29
Appen	ndix D. Chlorophyll a Field Form	41
Appen	ndix E. Laboratory Certifications	. 44
Appen	ndix F. Acknowledgment Letters	54
Appen	ndix G. Wild Animal Collector's Permit	56
Appen	ndix H. References	. 60
Apper	ndix I. Laboratory Quality Manual and Standard Operating Procedures	. 63

2022 NEORSD Watershed Monitoring Study Plan April 18, 2022

List of Acronyms

DELTs	Deformities, Eroded Fins, Lesions & Tumors		
EPA	Environmental Protection Agency		
GPS	Global Positioning System		
HD	Hester-Dendy		
HUC	Hydrologic Unit Code		
IBI	Index of Biotic Integrity		
ICI	Invertebrate Community Index		
LIBI	Lacustuary Index of Biotic Integrity		
LICI	Lacustuary Invertebrate Community Index		
L-QHEI	Lacustuary Qualitative Habitat Evaluation Index		
Mlwb	Modified Index of Well-Being		
NEORSD	Northeast Ohio Regional Sewer District		
PVC	Polyvinyl Chloride		
PVDF	Polyvinylidene Fluoride		
QDC	Qualified Data Collector		
QHEI	Qualitative Habitat Evaluation Index		
RM	River Mile		
RPD	Relative Percent Difference		
SOP	Standard Operating Procedure		
USGS	United States Geological Survey		
WQIS	Water Quality & Industrial Surveillance		

2022 NEORSD Watershed Monitoring Study Plan April 18, 2022

(3) Parameters Covered

Fish specimens will be identified to species level, weighed, counted and examined for the presence of external anomalies including DELTs (deformities, eroded fins, lesions and tumors). An Ohio EPA Fish Data Sheet (Appendix A) will be completed during each assessment. Quantitative fish sampling is expected to be conducted at all locations.

Macroinvertebrate community assemblages will be collected from each location. An external Level 3 Qualified Data Collector for Benthic Macroinvertebrate Biology Identification will identify and enumerate the specimens collected from each site¹. All specimens will be identified to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b) ². The NEORSD Macroinvertebrate Field Sheet (Appendix A) will be completed at each site during sample retrieval or when qualitative sampling is conducted.

Stream habitat will be measured by scoring components of the QHEI at all locations, including the substrate, instream cover, channel morphology, riparian zone, bank erosion, pool/glide and riffle/run quality and gradient. The Lacustuary QHEI (L-QHEI) will be performed at sites that are affected by the water level of Lake Erie. Examples of the Ohio EPA field sheets for the QHEI and the L-QHEI can be found in Appendix A.

Water chemistry samples will be collected at each electrofishing/ macroinvertebrate sampling site included in the study. Water chemistry samples will be analyzed by NEORSD's Analytical Services Division. Appendix B lists the parameters to be tested along with the detection limits and practical quantitation limits. Field measurements for dissolved oxygen, pH, temperature, conductivity and turbidity will also be performed. A Surface Water Condition Sampling Field Data Form will be completed at each site during each sampling event (Appendix A).

Benthic and water column chlorophyll *a* samples may be collected from stream locations. Chemical and physical water quality parameters to be measured in conjunction with the chlorophyll *a* samples include total phosphorus, dissolved reactive phosphorus, nitrite, nitrate+nitrite, ammonia, alkalinity, turbidity and suspended solids. In the Cuyahoga River, YSI 6600EDS, or EXO2 data sondes may be installed at RMs 16.20, 10.75, 10.10, and 7.00 around the time that this sampling is conducted to more frequently monitor dissolved oxygen, temperature, conductivity, specific conductivity and pH.

3

¹ The contractor responsible for doing this work as not been identified yet. Once this contract is awarded, their contact information will be submitted.

²See Appendix H for a list of all references.

(4) Field Collection and Data Assessment Techniques

Field collections for fish will be conducted at all stream locations unless noted in the sample location table for each study. Sampling will be conducted using longline, tote barge, backpack, or boat electrofishing techniques and will consist of shocking all habitat types within a sampling zone. Headwater and wading sites, which are 0.15 and 0.20 kilometers in length, respectively, will be surveyed by moving from downstream to upstream. Boat sites, which are 0.50 kilometers in length, will be surveyed by moving from upstream to downstream. The stunned fish will be collected and placed into a live well for later identification. The longline, tote barge, backpack, and boat electrofishing zones will be assessed one to three times during the field season (June 15 - October 15).

Fish will be identified to the species level, weighed, counted, and examined for the presence of external anomalies including DELTs. Fish easily identified (commonly collected from year to year) will be returned to the site from which they are collected. Fish species difficult to identify will be brought back to the laboratory for verification by NEORSD Level 3 Fish Qualified Data Collectors (QDC). If necessary, vouchers will be sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Voucher specimens will be collected as described in section (14). Endangered species and those too large for preservation will not be collected as voucher specimens, but will instead be photographed. Photographed vouchers will include features that permit definitive identification of the particular species.

Fish will be preserved in 10 percent formalin in the field, soaked in tap water for 24 to 48 hours after 5 to 7 days, then transferred to solutions of 30 and 50 percent ethanol for 5 to 7 days each and, finally, to 70 percent ethanol for long-term storage. Specimens larger than six inches will be slit along the right side and then soaked in formalin for approximately 10 to 14 days before being transferred to water and solutions of 30, 50 and 70 percent ethanol. Label information will include location (description and coordinates), date, time, collectors' names and sample identification code for each specimen collected.

Macroinvertebrate sampling will be conducted using quantitative and qualitative sampling techniques. Quantitative sampling will be done using a modified Hester-Dendy multi-plate artificial substrate sampler (HD) that is colonized for a six-week period. Multiple HD samplers may be installed at one or all sampling locations in case samplers are lost due to vandalism, burial, etc. or for the purposes of providing a replicate sample. Qualitative sampling will be conducted using a D-frame dip net when HD samplers are retrieved. The NEORSD Macroinvertebrate Field Sheet will be completed during each HD retrieval.

Macroinvertebrate voucher specimens for both quantitative and qualitative sampling will be collected as described in section (14). Macroinvertebrate community assemblages collected will be shipped to an external Level 3 Qualified Data Collector for Benthic Macroinvertebrate Biology Identification for identification and enumeration. The Level 3

QDC will identify specimens to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life*, *Volume III* (1987b).

A detailed description of the sampling and analysis methods utilized in the fish community and macroinvertebrate surveys, including calculations of the IBI, MIwb, and ICI, can be found in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life*, *Volumes II* (1987a) and *III* (1987b). Methods for assessing fish and macroinvertebrate communities in lacustuary zones can be found in Ohio EPA's draft *Biological Criteria for the Protection of Aquatic Life*, *Volume IV* (1997).

The QHEI, as described in Ohio EPA's Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI) (2006) will be used to assess aquatic habitat conditions at each sample location. The L-QHEI will be used where appropriate and will follow Ohio EPA's Methods of Assessing Habitat in Lake Erie Shoreline Waters Using the Qualitative Habitat Evaluation Index (QHEI) Approach (Version 2.1) (2010).

Water chemistry sampling may occur across a variety of flow conditions. Techniques used for water chemistry sampling and chemical analyses will follow the Surface Water Field Sampling Manual for water quality parameters and flows (Ohio EPA, 2021a). Chemical water quality samples from each site will be collected with at least one 4-liter disposable polyethylene cubitainers with disposable polypropylene lids and two 473-mL plastic bottles. Water samples collected for analysis of dissolved reactive phosphorus will be filtered using a 0.45-µm PVDF syringe filter and will be collected in a 125-mL plastic bottle. Bacteriological samples will be collected in a sterile plastic bottle preserved with sodium thiosulfate. All water quality samples will be collected as grab samples. Duplicates and replicates will together comprise not less than 5% of total samples collected for each study plan. Field blanks will also comprise not less than 5% of the total samples collected for each study plan, for a total frequency of quality control samples of not less than 10% of the total samples collected. With the exception of bacteriological duplicate/replicate samples, the acceptable percent RPD will be based on the ratio of the sample concentration and detection limit (Ohio EPA, 2019): Acceptable % RPD = $[(0.9465X^{-0.344})*100] + 5$, where X = sample/detection limit ratio. For bacteriological samples, duplicate/replicate samples more than 5x apart from one another (%RPD > 133.3%) will be rejected in accordance with the Ohio EPA approved method for data validation of bacteriological samples outlined in Section F of the Ohio 2020 Integrated Water Quality Monitoring and Assessment Report (Ohio EPA, 2020). Those RPDs that were higher than acceptable may indicate potential problems with sample collection and, as a result, the data will not be used for comparison to the water quality standards. Acid preservation of the samples, as specified in the NEORSD laboratory's standard operating procedure for each parameter, will occur in the field. Appendix B lists the analytical method, method detection limit and practical quantitation limit for each parameter analyzed. Field analyses include the use of either a YSI EXO1 sonde, or YSI 600XL sonde to measure dissolved oxygen (DO), water temperature, conductivity and pH; and when necessary, a Hanna HI 98129 meter to measure pH and a

Hach HQ30d meter with LDO101 probe to measure DO. Field turbidity will be measured using a Hach 2100Q Turbidimeter. Specifications for these meters have been included in Appendix C.

Benthic and water column chlorophyll a samples may be collected if time and resources allow. Sampling methods will follow those detailed in the NEORSD *Chlorophyll a Sampling and Field Filtering Standard Operating Procedure* (SOP-EA001-00). A Chlorophyll a Sampling Field Sheet will be completed for each site where benthic chlorophyll a samples are collected (Appendix D). Water chemistry grab samples will be collected at the same time using the methods discussed previously and will be analyzed for nutrients, turbidity, alkalinity and suspended solids. Additionally, in the Cuyahoga River, approximately 24-hours prior to each chlorophyll a sampling event, YSI EXO2 data sondes may be deployed at RMs 16.20, 10.75, 10.10 and 7.00. If installed, each data sonde will record, at fifteen-minute intervals, dissolved oxygen concentration, pH, temperature, and conductivity from the time the data sonde is deployed until the time it is retrieved. These data sondes will be placed in the stream by inserting each one into a 4.5-inch PVC pipe with holes drilled into the sides of the lower third of the pipe to allow water to pass through it. The data sondes will remain in the river for approximately 24-hours or longer following collection of the chlorophyll a samples.

Where possible, data assessment will include an analysis of temporal and spatial trends in the collected data. Species assemblages and individual metrics will be analyzed. Graphs that show current and historic QHEI, L-QHEI, IBI, LIBI, MIwb, ICI, and LICI scores and how these scores compare to attainment status of biocriteria will be prepared. Water chemistry data collected will be compared to Ohio water quality standards to determine whether any excursions from the applicable water quality criteria have occurred. It will also be used to determine any relationships among individual parameters and chlorophyll a concentrations. Comparisons between water quality and biological community health will only be made if at least three water quality samples have been collected from that site.

(5) Stream Flow Measurement

Stream flow will be recorded for all locations during each electrofishing pass utilizing data from the United States Geological Survey (USGS) gauge station nearest the stream location, if applicable.

Stream flow will be measured with a HACH FH950 Flow Meter or Ott MF Pro Meter, which measure flow in feet per second, when HD samplers are installed and retrieved. The specifications for the flow meters can be found in Appendix C.

(7) Schedule

One to three electrofishing surveys will be conducted at each site between June 15 and October 15, 2022. Surveys will be conducted at least three weeks apart. Specific dates

have not been scheduled. River flow and weather conditions will be assessed weekly to determine when each electrofishing pass will be conducted.

Artificial substrate samplers will be installed at stream locations between June 15 and August 19, 2022 and retrieved six weeks later. Qualitative macroinvertebrate sampling will be conducted one time at all sites. Specific dates have not been scheduled. River flow and weather conditions will be assessed weekly to determine when the HD sampler installations and retrievals and qualitative sampling will be conducted.

QHEI, and, if necessary, L-QHEI habitat evaluations will be conducted one time between June 15 and October 15, 2022. QHEI evaluations will be conducted around the same time as one of the electrofishing surveys.

Water chemistry samples will be collected a minimum of three times from stream locations between June 15 and October 15, 2022.

Benthic and water column chlorophyll *a* samples may be collected at least one time from stream locations between June 15 and October 15, 2022. These samples will be collected under low-flow conditions.

(8) QA/QC

Quality assurance and quality control of sampling and analysis methods for habitat, fish, and macroinvertebrate evaluations will follow Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volumes II* (1987a) and *III* (1987b), *Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI)* (2006), draft *Biological Criteria for the Protection of Aquatic Life: Volume IV: Fish and Macroinvertebrate Indicies for Ohio's Lake Erie Nearshore Waters, Harbors, and Lacustuaries* (1997) and *Methods of Assessing Habitat in Lake Erie Shoreline Waters Using the Qualitative Habitat Evaluation Index (QHEI) Approach (Version 2.1)* (2010)

Electrofishing equipment will be used according to the guidelines listed in the operation and maintenance manual provided by Smith-Root, Inc. Malfunctioning equipment will not be used to collect data. Proper steps will be taken to correct any problems as soon as possible, whether by repairing in the field, at the NEORSD Environmental & Maintenance Services Center, or by contacting the supplier or an appropriate service company.

Fish species difficult to identify will be brought back to the laboratory for verification by Level 3 Fish QDC's, and if necessary, sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Voucher specimens will be collected as described in section (14). Endangered species and those too large for preservation will not be collected as voucher specimens, but will instead be photographed. Photographed vouchers will include features that permit definitive identification of the particular species.

All macroinvertebrate community assemblages from stream locations, except for any replicate samples, will be collected and shipped to an external Level 3 Qualified Data Collector for Benthic Macroinvertebrate Biology Identification for identification and enumeration. All specimens will be identified to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b). All macroinvertebrate specimens will be returned to NEORSD. At least two voucher specimens of each species, when available, will be separated into individual vials and kept as described in section (14). The remaining specimens for each site will be returned in a single container labeled with the site number and collection method and date. All specimens and accompanying chain-of-custody documentation will be retained by NEORSD and stored at the Environmental & Maintenance Services Center for a period not less than ten years.

Water samples obtained for chemical analyses will be collected, preserved (see Section 4), labeled and then placed on ice inside the field truck. The field truck will remain locked at all times when not occupied/visible. Sampling activities, including sample time and condition of surface water sampled, will be entered in a field log book and on the Surface Water Condition Sampling Field Data Form. The samples will then be delivered immediately to the NEORSD Analytical Services cooler, after which the door to the cooler will be locked, and the samples will be transferred to the custody of Analytical Services. The NEORSD Analytical Services Quality Manual and associated Standard Operating Procedures are provided in Appendix I. Updates, revisions and any information on document control will be sent to Ohio EPA as needed.

For benthic and water column chlorophyll a sampling, three filtrations will be performed for each sample. A field filtration blank will be submitted for every 20 samples.

Calibration of YSI 600XL, EXO1, and EXO2 data sondes will be done according to the YSI Environmental Operations Manual. The conductivity will be calibrated first using a 1.413 mS/cm standard. Second, the pH will be calibrated using two different buffers (7 and 10 s.u.). The DO will be calibrated last with an acceptable error of 0.2 mg/L.

Once the EXO2 sondes are removed from the river following long-term installation, the accuracy of the data that has been collected will be checked by comparing readings taken by the sondes to known standards. If the measurements taken at this time meet quality control goals, all of the data collected since the last calibration will be considered accurate. The acceptable differences for pH and conductivity will be ± 0.3 with pH 7 buffer and $\pm 10\%$ of the conductivity standard, respectively (EPA New England- Region 1, 2005). The acceptable difference for DO will be ± 0.2 mg/L. If the measurements do not meet quality control goals, best professional judgment will be used to decide if any of the data collected during that period may still be accurate. For example, the data collected from the four locations may be plotted on the same graph, and if it appears that the data points are

following similar trends, they may be considered accurate. If any data that do not meet quality control goals are used, a rationale for their inclusion will be provided when the data are submitted.

(9) Work Products

Within one year of completion of the project, fish data (species, numbers, weights, pollution tolerances, the incidence of DELT anomalies, IBI or LIBI, MIwb scores), macroinvertebrate data (types and numbers of macroinvertebrates collected and ICI or LICI scores), habitat data (QHEI or L-QHEI raw data and scores) and water chemistry results will be submitted to the Ohio EPA or an Ohio EPA approved data warehouse. Additionally, reports summarizing, interpreting, graphically presenting and discussing the IBI (LIBI, where applicable), MIwb, ICI (LICI, where applicable) and QHEI (L-QHEI, where applicable) scores, chlorophyll a results, and any excursions from water quality standards may be prepared for internal use.

(10) Qualified Data Collectors

The following Level 3 Qualified Data Collectors (QDC) will be involved with this study:

	Address	Email Address	Phone	QDC Specialty(s)
			Number	
Hannah	4747 East 49 th Street	hassingerh@neered org	216-641-	QDC - 01374
Boesinger	Cuyahoga Hts., Ohio 44125	boesingerh@neorsd.org	6000	CWQA/BMB
Seth	4747 East 49 th Street		216-641-	QDC - 00010
1	Cuyahoga Hts., Ohio 44125	hothems@neorsd.org	6000	CWQA/FCB/SHA
Hothem	Cuyanoga i its., Onio 44 125		0000	/BMB
Jillian	4747 East 49 th Street	knittlej@neorsd.org	216-641-	QDC - 00512
Knittle	Cuyahoga Hts., Ohio 44125	Kilittlej@fleorsd.org	6000	CWQA/BMB
Ron	4747 East 49 th Street	maichler@neorsd.org	216-641-	QDC - 00145
Maichle	Cuyahoga Hts., Ohio 44125	maichiel@neorsu.org	6000	CWQA/BMB
Mark	4747 East 49 th Street	mattacanm@naaradara	216-641-	QDC - 01020
Matteson	Cuyahoga Hts., Ohio 44125	mattesonm@neorsd.org	6000	CWQA/FCB/SHA
Denise	4747 East 49 th Street	nhillingd@noored org	216-641-	QDC - 01203
Phillips	Cuyahoga Hts., Ohio 44125	phillipsd@neorsd.org	6000	CWQA
Francisco	4747 East 49 th Street	riveref@peered era	216-641-	QDC - 00262
Rivera	Cuyahoga Hts., Ohio 44125	riveraf@neorsd.org	6000	CWQA
Eric	4747 East 49 th Street	soobplans@noored ara	216-641-	QDC - 01030
Soehnlen	Cuyahoga Hts., Ohio 44125	soehnlene@neorsd.org	6000	CWQA/BMB
Justin	4747 East 49 th Street	talani@naaradara	216-641-	QDC - 01304
Telep	Cuyahoga Hts., Ohio 44125	telepj@neorsd.org	6000	CWQA/FCB/SHA
John	4747 East 49 th Street		216-641-	QDC - 00008
Rhoades	Cuyahoga Hts., Ohio 44125	rhoadesj@neorsd.org	6000	CWQA
Kelsey	4747 East 49 th Street	amaidamic@maamad	216-641-	QDC - 01091
Amidon ²	Cuyahoga Hts., Ohio 44125	amidonk@neorsd.org	6000	CWQA
¹ NEORSD Lea	ad Project Manager	<u> </u>		

2022 NEORSD Watershed Monitoring Study Plan April 18, 2022

Name	Address	Email Address	Phone	QDC Specialty(s)			
			Number				
² See acknowledgement letter for conducting water chemistry sampling (Appendix F)							

The following is a list of persons not qualified as Level 3 QDCs who may be involved in the project. Prior to the start of sampling, the project managers will explain to each individual the proper methods for sampling. Sampling will only be completed under the direct observation of a QDC. The lead project manager will be responsible for reviewing all reports and data analysis prepared by qualified personnel prior to completion.

Name	Address	Email Address	Phone Number
Lindsay Baker	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	bakerl@neorsd.org	216-641-6000
Brittany Dalton	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	daltonb@neorsd.org	216-641-6000
Rae Grant	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	grantr@neorsd.org	216-641-6000
Jeff Harrison	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	harrisonj@neorsd.org	216-641-6000
Matthew Johnson	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	johnsonmatthew@neorsd.org	216-641-6000
Shawn Robinson	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	robinsons@neorsd.org	216-641-6000
Frank Schuschu	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	schuschuf@neorsd.org	216-641-6000
Wolfram von Kiparski	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	vonkiparskiw@neorsd.org	216-641-6000
Theresa Walsh	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	walsht@neorsd.org	216-641-6000
Laura Ferguson	4747 East 49th Street Cuyahoga Hts., Ohio 44125	fergusonl@neorsd.org	216-641-6000
Paraprofessional Intern (TBD)	4747 East 49th Street Cuyahoga Hts., Ohio 44125	@neorsd.org	216-641-6000
Paraprofessional Intern (TBD)	4747 East 49th Street Cuyahoga Hts., Ohio 44125	@neorsd.org	216-641-6000
Paraprofessional Intern (TBD)	4747 East 49th Street Cuyahoga Hts., Ohio 44125	@neorsd.org	216-641-6000

2022 NEORSD Watershed Monitoring Study Plan April 18, 2022

(11) Contract laboratory contact information

All bacteriological and/or chemical sample analysis will be completed by NEORSD's Analytical Services Division. Evidence of NEORSD's Analytical Services current accreditation and method dates can be found in Appendix E. The contact information for NEORSD's Analytical Service Division is:

NEORSD Analytical Services Cheryl Soltis-Muth, Manager 4747 E. 49th Street Cuyahoga Heights, Ohio 44056 soltis-muthc@neorsd.org 216-641-6000

Any fish that is not positively identified in the field, or at NEORSD, will be sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Fish will be identified to the species level.

Mr. Marc Kibbey, Associate Curator of Fish 1315 Kinnear Road, Columbus, Ohio 43212 cavender.1@osu.edu / kibbey.3@osu.edu 614-292-7873

Identification of macroinvertebrates for stream locations will be completed by an external Level 3 Qualified Data Collector for Benthic Macroinvertebrate Biology Identification ³. Benthic macroinvertebrates will be identified to the lowest practical level as recommended by Ohio EPA (1987b). Contact information for this contractor will be submitted once the contract is awarded.

(12) Copy of ODNR collector's permit See Appendix G.

(13) Digital Catalog Statement

A digital photo catalog of all sampling locations will be maintained for 10 years and will include photos of the specific sampling location(s), the riparian zone adjacent to the sampling location(s) and the general land use in the immediate vicinity of the sampling location(s).

Print/Signature: Seth Hothem/ Sec Hor Date: 4/18/22

³ A letter of acknowledgement of the macroinvertebrate identification responsibilities will be added as an addendum to this study plan, in Appendix F, upon finalization of the macroinvertebrate identification contract.

(14) Voucher Specimen Statement

NEORSD will maintain a benthic macroinvertebrate and fish voucher collection which includes two specimens, or appropriate photo vouchers, of each species or taxa collected during the course of biological sampling from any stream within the NEORSD's service area. When benthic macroinvertebrates from multiple surface waters are collected within the same year and identified by the same QDC, one voucher collection will be created to represent the specimens collected from those streams. When fish specimens from multiple surface waters are collected within the same year, one voucher collection will be created to represent the specimens collected from those streams. A separate collection for each sampling event will not be maintained.

NEORSD will provide specimens or photo vouchers to the Director upon request. This collection will be stored at the NEORSD laboratory in the Environmental and Maintenance Services Center.

Print/Signature:	Seth Hothem/ Sour	More	Date: 4/18/22
ot limited to; the rongitude, sampling	ation Statement I will make available any an ame of the water body sam location river mile where p UC 8 number and name, an	pled, sampling locat ossible, general loca	tion latitude and ation information, the U.S.
Print/Signature:	Seth Hothem/ &	Hoth	Date: 4/18/27
*UB = 0 \$10 10 12 25 00 00 10 00	3 Data Collector Statement Project Manager for all strea		for all project data types.
Print/Signature:	Seth Hothem/	tore-	Date: 4/18/22

2022 NEORSD Watershed Monitoring Study Plan April 18, 2022

(17) Trespassing Statement

I have not been convicted or pleaded guilty to a Violation of section 2911.21 of the Revised Code (criminal trespass) or a substantially similar municipal ordinance within the previous five years.

Print/Signature:	Hannah Boesinger/ Henrih Boesiye	Date: 4/18/22
Print/Signature:	Seth Hothem/ Both Holl	Date: 4/18/22
Print/Signature:	Jillian Knittle/ him White	Date: 4/18/22
Print/Signature:	Ron Maichle/ KM	Date: 04-18-22
Print/Signature:	Mark Matteson/	Date: 4/18/22
Print/Signature:	Denise Phillips/ Sepuja Gally	Date: 4/18/22
Print/Signature:	John Rhoades/ Africal 2	Date: 04/18/22
Print/Signature:	Francisco Rivera / Francisco Riv	Date: 4/18/22
Print/Signature:	Eric Soehnlen/	Date: 4/18/2022
Print/Signature:	Justin Telep/ Justin Jeleft	Date: 4/18/1022

Appendix A. Field Forms

ChieEn	FISH DATA SHEET	Sheet ID For Office I	Use Only	New Station (requires lat/long & county) Mix	Zone		Paş	зе	_of	·
Station ID		River Code		RM	Date			_Tiı	me_		
				Location _							
Lat	Long	·	County		ALP _		_ Tiı	ne F	ishe	d	
Crew		Netter	Oth	ers		Sam	pler	Турє	<u> </u>		
Distance	Flow	Temp. C	Secchi	Source	Project_						
	Number Tot Weighed Cour			Weights Cou	nts	D efor	mities	LT Al , Erosi ple DE	ions, I	Lesion	ıs, Tumo
						D	Е	L	T	M	*
V 10x						_					
						D	Е	L	Т	М	*
W 10						_					
V 10x						D	Е	L	Т	M	*
V 10x											
						D	Е	L	Т	M	*
V 10x											
V 10x						D	Е	L	T	M	*
V 10x											
						D	Е	L	Т	M	*
X 7											
V 10x						D	Е	L	T	M	*
V 10x											
						D	Е	L	T	M	*
X Y						_					
V 10x						D	Е	L	Т	M	*
									-		
V 10v						_					

^{*} A-anchor worm; B-black spot; C-leeches; F-fungus; N-blind; P-parasites; S-emaciated, W-swirled scales Y-popeye; Z-other

	Fine (Code !	Number Weighed	Total Counted	Total Weight	WeightsCour	nts		Pa	ige -		of -	
10	11115	Couc	Vielgheu	Counted	weight			D	Е	L	Т	M	*
ŀ	$\overline{\mathbf{V}}$	10x											
11	•	10X						D	Е	L	Т	M	*
``													
ŀ	V	10x						D	Е	L	Т	M	*
12													
	V	10x											
13								D	Е	L	Т	M	*
	V	10x											
14								D	Е	L	Т	M	*
	\mathbf{V}	10x											
								D	Е	L	Т	M	*
15													
ŀ	V	10-											
ł	V	10x						D	Е	L	T	M	*
16													
ŀ	V	10x						D	F	ī	T	М	*
17									L	L	1	141	
	V	10x											
18								D	Е	L	Т	M	*
	V	10x											
19								D	Е	L	Т	M	*
-	\mathbf{V}	10x											
ł		104						D	Е	L	Т	M	*
20				I									
	\mathbf{V}	4.0											
-	V	10x						D	Е	L	T	M	*
21								\vdash					
	V	10x											

NEORSD Macroinvertebrate Field Sheet

Stream:					River Mile:		Year:
					-		
River Code:			Station	n ID:			
							o-Region:
					yment Inforn		
Install Date:					QDC Circled):		
Current at HD (f							ures Obtained: Yes No
		_			val Informati		
Sampling Method	d: Hester-l	Dendy	Dipn	et Ekı	man (6x6)	Other:	
							ter Temp: °C / °I
							ents:
				d:			
	Disturbed:			Debris: Yes			
	Silt/Solids:	None	Slight	Moderate	Heavy		
Replicate	: Current (fps):		Depth (cm):		Comm	ents:
				d:			
	Disturbed:	Yes	No	Debris: Yes	s No		
	Silt/Solids:	None	Slight	Moderate	Heavy	Sample ID:	
Dipnet-	Time Sampl	ed (min):		X Nui	mber of Crew:	. =	Total (min):
	Start T	ime:		End Time:		Sample ID:	
	Habitats Sar	npled:	Pool	Riffle Ru	n Margin	Backwater	
			R	iver Samplin	g Conditions		
Weather:		Clear	Partly C	loudy Ove	ercast Lig	ht Rain	Other:
Canopy (ove	er HD):	Open	75	%	50 %	25 %	Closed
Flow Condit	ion:	Dry	Intermitte	nt Interst	itial Low	Normal	Above Normal Flood
Current Velo	ocity:	Non-det	ect	Slow	Moderate	Fast	
Channel Mo	rphology:	Natural	Cha	nnelized	Channelized	(Recovered)	Impounded
Bank Erosio	n:	None		Slight	Moderate	Extensi	ve
Water Clarii	ty:	Clear	Mu	ddy	Tea	Milky	Other:
Water Color	:	None	Gre	en	Brown	Grey	Other:
Evidence of Polli	ution:						
Potential Pollution	on Sources:						
Comment Section	on:						
							_
Samples Analyz					OC #:	Date	:
Compa	ny/Entity:						

NEORSD Macroinvertebrate Field Sheet

	P	hysical Charac	teristics		
Substrate Characteristics		Predominant	Land Use (Indicate	Left, Right or	Both)
		Forest	Urban		en Pasture
o 10 Riffle Riffle nits Run Run	Pool nits	Shrub	Residential/Park	Clo	osed Pasture
to 10 Riff Units Units	$Po_{ m O}$	Old Field	Mining/Construc	ction We	etland
Bedrock		Rowcrop	Industrial	Other	
Boulder		1			
Bedrock Boulder Copple/Rupple Conze		Predominant l	Riparian Vegetation	l F	Riffle Habitat
S Course Course		Left Right	Туре	Embedded:	Yes No
Gravel Fine			Large Trees	Developmen	nt:
Sand			Small Trees	1	Extensive
□ Silt			Shrubs		Moderate
Silt Clay/Hardpan Detritus			Grass/Weeds		Sparse
Detritus			None		Absent
Detritus Peat Muck			Riparian Width	Quality:	_
⁸ Muck			-	Good	Fair Poor
Other		Margin Habit	tat		
Macrophytes		Margin Qualit	y: Good Fa	ir Poor	%
_ Algae- Note Color		Types Present.	:		
Artifacts Compaction (F,M,S)		Root Mats	s Underc	ut Banks	Rip Rap
○ Compaction (F,M,S)		Tree Root	ts Shallov	vs	Bulkhead
Depth (Avg)		Woody D	ebris Soft Cl	ay	
Width (Avg)		Macrophy	rtes/Grass Ot	her	
sand	Biolo	gical Characte	ristics		
Overall Collection		_	abitat Specific Org	anisms	
Est. Amt (V=>151; A= 150-101; C= 100-11; R= 10-1)	Riffle:		%		
/ Porifera, Bryozoa		edominant Organ			
/ / Turbellaria, Oligochaeta, Hirudinea		her Common Or			
/ Isopoda, Amphipoda			igh Moderate	Low	
Decapoda, Hydracarina		•	igh Moderate	Low	
Ephemeroptera		,			
Baetidae	Run:	C	½		
/ / Heptageniidae, Leptohyphidae, Caenidae	Pre	edominant Organ	nism:		
Other	Ot	her Common Or	ganisms:		
Zygoptera, Anisoptera	De	nsity: H	igh Moderate	Low	
Plecoptera	Di		igh Moderate	Low	
Hemiptera					
/ Megaloptera, Neuroptera	Pool:		%		
Trichoptera	Pre	edominant Organ	nism:		
Hydropsychidae	Ot	her Common Or	ganisms:		
/ Hydroptilidae, Leptoceridae	De	nsity: H	igh Moderate	Low	_
Other	Di	versity: H	igh Moderate	Low	
Coleoptera					
Elimidae	Margin	:			
Other	Pre	edominant Organ	nism:		
Diptera		her Common Or			
Chironomidae		•	igh Moderate	Low	
/ Tipulidae, Simuliidae	Di	versity: H	igh Moderate	Low	
Other					
Gastropoda, Bivalvia	Other 1	Notable Collectio	ons:		
Other					
V= Very Abundant; A= Abundant; C= Common; R= Rare					
Field Narrative Rating:	E	VG G	MG F	P VF	•

NEORSD Macroinvertebrate Field Sheet

Field Sketch

ream:		River Mile:	Year:
ver Code:	Station ID:		Date:
			1 (1 1)
Can place a copy of	the sketch from your Field N	Notebook or the QHEI sketc	th (indicating HD) on page.
omment Section (2):			

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

Stream & Location:	<i>RM:</i> _	_ . <i>Date.</i>	·///
Scorers Full Name & Affiliation:_		Ohio Regional	
River Code: STORET #: Lat./Long.: (NAD 83 - decimal °)	/8	·	Office verified location
	NE (<i>Or 2</i> &	0 /	
BEST TYPES POOL RIFFLE OTHER TYPES POOL RIFFLE ORIGIN BLDR /SLABS [10] HARDPAN [4] LIMESTONE [1]		QUAI ☐ HEAVY	
□ □ BOULDER [9] □ □ □ DETRITUS [3] □ □ TILLS [1]	SILT	MODER	
□ □ COBBLE [8] □ □ MUCK [2] □ □ WETLANDS [0] □ □ GRAVEL [7] □ □ SILT [2] □ HARDPAN [0]	OILI	☐ NORMA ☐ FREE [1	
SAND [6] ARTIFICIAL [0] SANDSTONE [0]	OF DDE ON	☐ EXTENS	SIVE [-2]
□ □ BEDROCK [5]	EMB	S ☐ MODER NORMA	ATE [-1] Maximun L [0] 20
Comments Shale [-1] Shale [-1] Coal Fines [-2]		□ NONE [1	ון
COAL FINES [-2]			
2] ///STREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common quality; 2-Moderate amounts, but not of highest quality or in small amounts	n of margin	nal AMC	DUNT
quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional	large	Check ONE (Or 2 & average)
UNDERCUT BANKS [1] POOLS > 70cm [2] OXBOWS, BACKWATE	RS [1]	MODERATI	E 25-75% [7]
OVERHANGING VEGETATION [1] ROOTWADS [1] AQUATIC MACROPHYT SHALLOWS (IN SLOW WATER) [1] BOULDERS [1] LOGS OR WOODY DEE		☐ SPARSE 5- ☐ NEARLY A	<25% [3] BSENT <5% [1]
ROOTMATS [1]			Cover
Comments			Maximum 20
3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average)			
SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY			
☐ HIGH [4] ☐ EXCELLENT [7] ☐ NONE [6] ☐ HIGH [3] ☐ MODERATE [3] ☐ GOOD [5] ☐ RECOVERED [4] ☐ MODERATE [2]			
□ LOW [2] □ FAIR [3] □ RECOVERING [3] □ LOW [1] □ NONE [1] □ POOR [1] □ RECENT OR NO RECOVERY [1]			Channel
Comments			Maximum
			20
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY	•	k & average)	
EROSION WIDE > 50m [4] FOREST, SWAMP [3]	L R_	CONSERVATION	ON TILLAGE [1]
□ NONE / LITTLE [3] □ □ MODERATE 10-50m [3] □ □ SHRUB OR OLD FIELD [2] □ □ MODERATE [2] □ □ NARROW 5-10m [2] □ □ RESIDENTIAL, PARK, NEW FIELD			DUSTRIAL [0] STRUCTION [0]
☐ ☐ HEAVY / SEVERE [1] ☐ ☐ VERY NARROW < 5m [1] ☐ ☐ FENCED PASTURE [1]		te predominant	
□ □ NONE [0] □ OPEN PASTURE, ROWCROP [0] Comments		00m riparian.	Riparian
Comments			Maximum 10
5] POOL / GLIDE AND RIFFLE / RUN QUALITY		Recreation	n Potential
MAXIMUM DEPTH CHANNEL WIDTH CURRENT VELOCITY Check ONE (ONLY!) Check ONE (Or 2 & average) Check ALL that apply			/ Contact
□ > 1m [6] □ POOL WIDTH > RIFFLE WIDTH [2] □ TORRENTIAL [-1] □ SLOW [1]	101 541	Seconda	ry Contact
\square 0.7-<1m [4] \square POOL WIDTH = RIFFLE WIDTH [1] \square VERY FAST [1] \square INTERSTIT \square 0.4-<0.7m [2] \square POOL WIDTH < RIFFLE WIDTH [0] \square FAST [1] \square INTERMIT		(circle one and o	comment on back)
			Pool / Current
Comments			Maximum 12
Indicate for functional riffles; Best areas must be large enough to support	a popula	ition	RIFFLE [metric=0]
of riffle-obligate species: Check ONE (Or 2 & average). RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFF	LE / RU	N EMBEDD	
☐ BEST AREAS > 10cm [2] ☐ MAXIMUM > 50cm [2] ☐ STABLE (e.g., Cobble, Boulder) [2]		IONE [2]	
□ BEST AREAS 5-10cm [1] □ MAXIMUM < 50cm [1]		.OW [1] !ODERATE [0]	Riffle /
[metric=0] Comments		XTENSIVE [-1]	Maximum
			8
6] GRADIENT (ft/mi) UERY LOW - LOW [2-4] %POOL:	%GLIDI	=.	Gradient

A] SAMPLE Check A	ED REACH ALL that apply	Comment RE: Reach consistency/	Is reach typical of steam?, Recreation	n/Observed - Inferred, Other	r/ Sampling observations, Concerns, Acc	ess directions, etc.
METHOD	STAGE 1st -sample pass- 2nd					
☐ BOAT ☐ WADE ☐ L. LINE	HIGH UP NORMAL					
DISTANCE	□ LOW □					
	CLARITY 1stsample pass 2nd < 20 cm ☐ 20-<40 cm ☐ 40-70 cm ☐ > 70 cm/ CTB ☐ SECCHI DEPTH	☐ INVASIVE MACROPHYTES ☐ EXCESS TURBIDITY ☐ DISCOLORATION ☐ FOAM / SCUM	DJ MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED	Circle some & COMMENT	EJ ISSUES WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPs-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE	F] MEASUREMENTS \overline{x} width \overline{x} depth max. depth \overline{x} bankfull width bankfull \overline{x} depth
CANOP	EN g 2nd cn	☐ NUISANCE ODOR	RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED		FALSE BANK / MANURE / LAGOON WASH H ₂ 0 / TILE / H ₂ 0 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT	W/D ratio bankfull max. depth floodprone x ² width entrench. ratio
☐ 10%-<30% ☐ <10%- CLO	C] RECR	EATION AREA DEPTH POOL: □>100ft2□>3ft	IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE		PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY	Legacy Tree:

Stream Drawing:

Lake / Lacus	stuary (Le	ntic) Qŀ	HEI Fie	ld She	eet Ohi	O En	vironmental otection Agen	cy QHE	Score:	
RIVERCODE	RIV	ERMILE		WATER	RBODY	***	DIST	ANCE AS	SESSED (m):	
DATESCORER										
SCORER	LAI	•	LONG.		COMM	ENI -				
1] SUBSTRATE (Ch	eck ONLY Two	Substrate T	YPE BOXE	S; Estima	te % or note ev	ery typ	e present);	LAKE:	LACUSTUAR	/ :
TYPE	SHORE EDITION		SHO	RE ВОПОМ	SUBSTRATE OF	RIGIN			TEQUALITY	
D-BLDR/SLABS[7]		-HARDE			Check ONE (or 2 &	AVERA	l	Check ONE (a	2& AVERAGE)	Substrate
BOULDER[10]		- BEDRO				-ניו	S L T:		DERATE [-1]	
O-COBBLE [8]	\square	DD-DETRI			-WETLANDS	im:		D-SILT NO		
GRAVEL[7]			_		□-LACUSTUAI	RINE[1]				ي
□□-SAND[6]		□ □-MUCK	[2]		□ SANDSTON	Æ[1]		□-aAYF		Max 20
NOTE: Ignore studge		m point-source	es,		G-RIP/RAP[1]		SILT ORIGIN:	-INDUST		
score on natural subst NUMBER OF SUBSTI	rates	- 5 or More [2]	1		□-HARDPAN [□-SHALE [-1]	U]	ORIGIN.	U-ORGAN	• • • • •	
NUMBER OF SUBSTI	RAIE I TPES	-4 or Less [0]			□-COAL/ORE	[-2]			·1	
COMMENTS:	_		•			. –]				
2] COVER TYPES	DADOW: C		eck All That A		2000102				One or check2 and	AVERAGE) Cover
☐-OFF-SHORE SAND ☐-OVERHANGING VE		-DEEPWATER			• • •		I-EXTENSIV I-MODERAT			
LIFOVERHANGING VE LIFSHALLOWS (ON BE		-ROULDERS (1			GED AQUATIC VE WOODY DEBRIS	* 4 IL	J-SPARSE 5			
D-ROOTMATS [1]		-SAND BEACH	•	-LOGSON LGRAVEL E			J-NEARLY A		5[1]	
COMMENTS:		-SAIND BLACE	1]1]	-GWVIII	SEACH III					Max 20
3] SHORELINE MOI						i .	MODIFICATION	ONS OF SAM	IPLED SHOREL	NE
SHORE SINUOSITY	DEVELOPME		DIFICATION		STABILITY	_ ii	U-CEMENT	ED[-1]	□-STEEL BUL	KHEADS [-2
□-нен[2]	O-EXCELLE		NONE[7]				I-RIP RAPP		□HSLANDS[1]	
□-MODERATE[4] □-LOW[3]	□-GOOD [5] □-FAIR [3]		RECOVERE RECOVERIN		□-MODERATE [2] □-LOW [1]	ין י	□-RAILROAI		☐LDIKES [-1]	
□-NONE[1]	□-POOR[1]		-RECENT OF						-BANKSHAP	
			RECOVERY	- 1		- 1			-WOOD PILIN	NGS [1]
SHORE to BOTTOM S	I OPEMOPPHOI		AVERAGE	DEPTH (af 9	i measi iibs)		MODIFICA SHIP CHA			
☐-SLOPE < 15 deg.[0]			□- <50 cm]->400-500 cm			4 4 4 LL [-2]		ShareLine
☐-SLOPE < 25 deg.[1]]->500-900 cm [Sidelli
☐-SLOPE > 25 deg.[3]		3·M			⊒->900 cm [1]	⁴¹ = i				
	· · · · · · · · · · · · · · · · · · ·		->200-4		_					
COMMENTS:						⁻ ;				Max 20
4] RIPARIAN ZONE	AND BANK E	ROSION (Che	ck <i>ONE</i> box P	ER bank or :	2 and AVERAGE)	,			East or South on L Toward Lake in Lai	
RIPARIAN WIDTH L R (PerBank)	L R	SHOR Most Predominant		LTY (PAST	100 FOOT REPAR	IAN		BANK B		Din arian
□ □-MDE>50m [4]		FOREST, WET		[3]	-CONSERV	/ATION	TILLIAGE [1]		ONEUTILE [3]	Riparian
-MODERATE 10		SHRUBORO			-URBAN OF				ODERATE [1]	Ш
-NARROW 5-10	**	-VINEYARD, O			-OPENPAS	SUTRE, I	ROWOROP (11	AVY/SEVERE IS	
-VERY NARROV	V<5m[1]	FENCED PAS	TURE[1]		-MNINGCO					Max 10
D-NONE (D)		RESIDENTIAL	PARK, NEW	/FIELD [1]	□ □-DKEDWE	ETLAND	M			
COMMENTS:			·							
5] AQUATIC VEGE (Score all for observed ab								NO AQUA	TIC VEGETATION	N = 0
-Pond Lilies (NY -Pond Weed (Po			e (CYPERA Ish (SCIRPL		-Wild Celery -Waterweed			Wild F	Rice (ZIZANIA)	Vegetatio
(Score all for observed ab	undance: ABUNDA	NT = [-2]; COMM	10N = {-1]; FE	W = [0])						
-Purple Looses	trifeRec	d Grass	-Euraslar	ı Milfoli	Cattails	AI	gae (mats)	Alga	e (planktonic)	
COMMENTS										Max 30

Is the Sampling Reach Represer	ntative of Area Ha	abitat? (Y/N) If No	t, Explain:			
Depth measures: Zebra Mussel /Quagga Mussel /	Coverage D	->60%	6 □-25->10% □-<10	->1%		
First Sampling Pass: Second Sampling Pass: Third Sampling Pass:					Subjective Rating (1 – 10)	Aesthetic Ratin
WATERBODY MEASUREMENT	S: AVERA	GE WIDTH:	AVERAGE DEPTH:_	Maxim	Photos:	
		DRAW	ING OF SITE:	North Arrow:		

NEORSD Surface Water Condition Sampling Field Data Form

Stream:		Date:		Co	llectors:		
Gage Station	and ID:			Daily Mean	Discharge:		ft³/sec
	ole taken during or f				YES / N		
Water Quality	Meters Used:						
	Clear Partly Clor dy Rain Heavy		t Ligh	t Rain/Show	vers Hea		
<u>Flow:</u> Dry	Intermittent	Minimal					
HD Status:	OK	Other:					
Color:	Clear N	 Iuddy		Milky			
Odor: N	ormal Petroleur	n Anaero	bic	Sewage	Chemical	Other:	
Surface Coati	ng: None	Foam	Oily	Scum	Other:		
Field Paramet	ers: Conductiv	ity (μmhos/cm):			Sp. Cond. (µm	nhos/cm):	
	Dissolved	Oxygen (mg/L):			D.O.	(%):	
 <u>-</u>	Т	emperature (°C):				s.u.):	
Turbidity 1	(NTU):	Turbidity	2 (NTU):		Averag	e (NTU):	
E General Comi	ments:						
Reporting sig figs:	(Cond and DO% -	l) (pH, DO mg/I	L, and Chl	or/BGA-PC	- 0.1) (Temp-	0.01)	
Time (hrs):		River M	ile (Site):		, , , , , , , , , , , , , , , , , , ,	,	
Weather:	Clear Partly Clo	ıdy Overcas Snow Melt	t Ligł	t Rain/Show	vers Hea		
Flow: Dry	Intermittent	Minimal	Baseline	Normal	Elevated	Flood	
HD Status:	OK	Other:					
Color:	Clear N	luddy	Tea	Milky	Oth	er:	
Odor: N	ormal Petroleur	n Anaero	bic	Sewage	Chemical	Other:	
Surface Coati	ng: None	Foam	Oily	Scum	Other:		
Field Paramet	ers: Conductiv	ity (μmhos/cm):				nhos/cm):	
 		Oxygen (mg/L):			D.O.	(%):	
Turbidity 1		emperature (°C):				s.u.):	
Turbidity 1	(NTU):					e (NTU):	
	~						

Appendix B. Parameter Information

Parameter	Additional Name	Test	Unit	2018/2019 Minimum Detection Limit	2018/2019 Practical Quantitation Limit
Alkalinity	Alkalinity	EPA 310.2	mg/L	6.44	16
Mercury	Hg	EPA 245.1	μg/L	0.020	0.05
Ammonia ¹	NH ₃	EPA 350.1	mg/L	0.025	0.05
Nitrite	NO2	EPA 353.2	mg/L	0.005	0.04
Nitrite + Nitrate	NO ₂ + NO ₃	EPA 353.2	mg/L	0.017	0.04
Total Kjeldahl Nitrogen	TKN	EPA 351.2	mg/L	0.276	0.75
Dissolved Reactive Phosphorus	DRP	EPA 365.1	mg/L	0.011	0.025
Low Level Dissolved Reactive Phosphorus	LLDRP	EPA 365.1	μg/L	1.62	5
Total Phosphorus	Total-P	EPA 365.1	mg/L	0.016	0.031
Chloride	Chloride by IC	EPA 300.0	mg/L	0.97	5
Sulfate	Sulfate by IC	EPA 300.0	mg/L	1.77	5
Silver	Ag	EPA 200.8 ³	μg/L	0.0239	0.25
Silvei	Ay	EPA 200.8 ⁴	μg/L	0.0399	0.5
Aluminum	Al	EPA 200.8 ³	μg/L	1.71	10
Aldillillatii	Ai	EPA 200.8 ⁴	μg/L	9.48	30
Arsenic	As	EPA 200.8 ³	μg/L	0.311	1
Arsenie	AS	EPA 200.8 ⁴	μg/L	0.0828	0.5
Barium	Ba	EPA 200.8 ³	μg/L	0.102	0.25
Darium	Ба	EPA 200.8 ⁴	μg/L	0.0386	0.5
Beryllium	Be	EPA 200.8 ³	μg/L	0.0257	0.25
bei yilidiri	Бе	EPA 200.8 ⁴	μg/L	0.0314	0.5
Calcium	Ca	EPA 200.8 ³	μg/L	21.5	125
Calcium	Ca	EPA 200.8 ⁴	μg/L	71	500
Cadmium	Cd	EPA 200.8 ³	μg/L	0.0282	0.25
Cadilliulii	Cu	EPA 200.8 ⁴	μg/L	0.0483	0.5
Cobalt	Со	EPA 200.8 ³	μg/L	0.009	0.25
Cobart	CO	EPA 200.8 ⁴	μg/L	0.0253	0.5
Chromium	Cr	EPA 200.8 ³	μg/L	0.469	1.25
Chromiani	Ci	EPA 200.8 ⁴	μg/L	1.42	5
Copper	Cu	EPA 200.8 ³	μg/L	0.177	0.5
ουρρει	Cu	EPA 200.8 ⁴	μg/L	0.0798	0.5
Iron	Fe	EPA 200.8 ³	μg/L	3.175	12.5
11011	FE	EPA 200.8 ⁴	μg/L	41.5	150
Potassium	K	EPA 200.8 ³	μg/L	28.75	125
i otassiaiii	IX.	EPA 200.8 ⁴	μg/L	165	1250

Parameter	Additional Name	Test	Unit	2018/2019 Minimum Detection Limit	2018/2019 Practical Quantitation Limit
NA i	D.4	EPA 200.8 ³	μg/L	4.095	62.5
Magnesium	Mg	EPA 200.8 ⁴	μg/L	12.9	100
N. 4 - 11 - 12 - 12 - 12 - 12 - 12 - 12 -	D.4	EPA 200.8 ³	μg/L	0.705	2.5
Manganese	Mn	EPA 200.8 ⁴	μg/L	0.0565	0.5
Maludada ayya	N.4.0	EPA 200.8 ³	μg/L	0.119	0.25
Molybdenum	Мо	EPA 200.8 ⁴	μg/L	0.0496	0.5
C = -1!:	NI-	EPA 200.8 ³	μg/L	27.25	125
Sodium	Na	EPA 200.8 ⁴	μg/L	49.9	250
NI: -lI	N.I.	EPA 200.8 ³	μg/L	0.0745	1
Nickel	Ni	EPA 200.8 ⁴	μg/L	0.0416	0.5
	51	EPA 200.8 ³	μg/L	0.139	0.5
Lead	Pb	EPA 200.8 ⁴	μg/L	0.0287	0.5
		EPA 200.8 ³	μg/L	0.109	2.5
Antimony	Sb	EPA 200.8 ⁴	μg/L	0.0296	0.5
	_	EPA 200.8 ³	μg/L	0.307	1
Selenium	Se	EPA 200.8 ⁴	μg/L	0.0522	0.5
	_	EPA 200.8 ³	μg/L	5	20
Tin	Sn	EPA 200.8 ⁴	μg/L	0.714	5
		EPA 200.8 ³	μg/L	0.0466	0.5
Strontium	Sr	EPA 200.8 ⁴	μg/L	0.0602	0.5
		EPA 200.8 ³	μg/L	0.059	1
Titanium	Ti	EPA 200.8 ⁴	μg/L	0.176	0.5
	_	EPA 200.8 ³	μg/L	0.0545	0.25
Thallium	TI	EPA 200.8 ⁴	μg/L	0.341	1
		EPA 200.8 ³	μg/L	0.258	2.5
Vanadium	V	EPA 200.8 ⁴	μg/L	1.03	5
		EPA 200.8 ³	μg/L	2.48	5
Zinc	Zn	EPA 200.8 ⁴	μg/L	0.554	2
Total Metals	Total Metals (calc.)	EPA 200.8	μg/L)+(Cu μg/L)+(Ni Zn μg/L)
Hardness	Hardness (calc.)	SM 2340B ²	mg/L	-	L = (2.497*Ca 18*Mg mg/L)
Escherichia coli	E. coli	SM9223 Colilert QT (18 & 24 Hour)	MPN/100m L	1 MPN	1 MPN
Chlorophyll a	Chlorophyll a	EPA 445.0	μg/L	0.334	1
Chemical Oxygen Demand	COD	EPA 410.4	mg/L	8.4	20

Parameter	Additional Name	Test	Unit	2018/2019 Minimum Detection Limit	2018/2019 Practical Quantitation Limit
Biological Oxygen Demand	BOD	SM 5210 ²	mg/L	2	N/A
Total Solids	TS	SM 2540 B ²	mg/L	1	5
Total Suspended Solids	TSS	SM 2540 D ²	mg/L	0.5	1
Total Dissolved Solids	TDS	SM 2540 C ²	mg/L	1	5
Turbidity **		EPA 180.1	NTU	0.1	0.2
Field Parameter	Additional Name	Test	(Value Reported in)		
рН		SM 4500 H+B	s.u.		
Conductivity		SM 2510A ²	μs/cm		
Specific Conductivity		SM 2510B ²	μs/cm		
Dissolved Oxygen	DO	SM 4500-0 G ²	mg/L		
Temperature	Temp	EPA 1701.1	°C		
Turbidity **		EPA 180.1	NTU		

 $^{^{1}}$ Listed MDL/PQL is for undistilled samples. Any samples that require distillation will have a MDL = 0.065 mg/L, PQL = 0.150 mg/L

² <u>Standard Methods for the Examination of Water and Wastewater</u>, Method approved by Standard Methods Committee, 1997. Editorial revisions, 2011.

³ MDLs and PQLs specific to ICP-MS Xseries instrument

⁴ MDLs and PQLs specific to ICP-MS qNOVA instrument

^{**} Turbidity will either be completed in the field or at the laboratory.

Appendix C. Meter Specifications

The YSI 600XL and 600XLM

The YSI 600XL and YSI 600XLM compact sondes measure eleven parameters simultaneously: Temperature Conductivity Specific Conductance

Salinity Depth or Level

YSI 600XL and 600XLM Sondes

Measure multiple parameters simultaneously

Resistivity Rapid Pulse™ DO (% and mg/L)

TDS

ORP

pΗ

Connect with Data Collection Platforms

Either sonde can easily connect to the YSI 6200 DAS (Data Acquisition System), YSI EcoNet™ or your own data collection platform, via SDI-12 for remote and real-time data acquisition applications.

Economical Logging System

The YSI 600XLM is an economical logging system for long-term, in situ monitoring and profiling. It will log all parameters at programmable intervals and store 150,000 readings. At one-hour intervals, the instrument will log data for about 75 days utilizing its own power source. The 600XL can also be utilized in the same manner with user-supplied external power.

- Either sonde fits down 2-inch wells
- Horizontal measurements in very shallow waters
- Stirring-independent Rapid Pulse* dissolved oxygen sensor
- Field-replaceable sensors
- Easily connects to data collection platforms
- Available with detachable cables to measure depth up to 200 feet
- Compatible with YSI 650 Multiparameter Display System
- Use with the YSI 5083 flow cell for groundwater applications

Economical, multiparameter sampling or logging in a compact sonde

Sensor performance verified*

The 6820 VZ and 6920 VZ sondes use sensor technology that was verified through the US EPA's Environmental Technology Verification Program (ETV). For information on which sensors were performance-verified, turn this sheet over and look for the ETV logo.

To order, or for more info, contact YSI Environmental.

+1 937 767 7241 800 897 4151 (US) www.ysi.com

YSI Environmental +1 937 767 7241 Fax +1 937 767 9353 environmental@ysi.com

Endeco/YSI +1 508 748 0366 Fax +1 508 748 2543 systems@ysi.com

SonTek/YSI +1 858 546 8327 Fax +1 858 546 8150 inquiry@sontek.com

YSI Gulf Coast +1 225 753 2650 Fax +1 225 753 8669 environmental@ysi.com

YS1 Hydrodata (UK) +44 1462 673 581 Fax +44 1462 673 582 europe@ysi.com

YSI Middle East (Bahrain) +973 1753 6222 Fax +973 1753 6333 halsalem@ysi.com

YSI (Hong Kong) Limited +852 2891 8154 Fax +852 2834 0034 hongkong@ysi.com

YSI (China) Limited +86 10 5203 9675 Fax +86 10 5203 9679 heijing@ysi-china.com

YS1 Nanotech (Japan) +81 44 222 0009 Fax +81 44 221 1102 nanotech@ysi.com

ISO 9001 ISO 14001

Yollow Springs, Ohio Faelity

ROX and Rapid Pulse are trademarks and Fee Watch, Pure Data for a Healthy Planet and Who's Minding the Planet? are registered trademarks of YVI Incorporated.

© 2007 YSI Incorporated

Printed in USA 0107 E55-01

YS1 incorporated
Who's Minding
the Planet?

YSI 600XL & 600XLM Sensor Specifications

	Range	Resolution	Accuracy
Dissolved Oxygen % Saturation ETV 6562 Rapid Pulse" Sensor*	0 to 500%	0.1%	0 to 200%: ±2% of reading or 2% air saturation, whichever is greater; 200 to 500%: ±6% of reading
Dissolved Oxygen mg/L 6562 Rapid Pulse** Sensor*	0 to 50 mg/L	0.Q1 mg/L	0 to 20 mg/L: ± 0.2 mg/L or 2% of reading, whichever is greater; 20 to 50 mg/L: ±6% of reading
Conductivity 6560 Sensor* ETV	0 to 100 mS/cm	0.001 to 0.1 mS/cm (range dependent)	±0.5% of reading + 0,001 m\$/cm
Salinity	0 to 70 ppt	0.01 ppt	±1% of reading or 0.1 ppt, whichever is greater
Temperature 6560 Sensor* ETV	-5 to +50°C	0.01°C	±0.15°C
pH 6561 Sensor* ET	Ø to 14 units	0.01 unit	±0,2 unit
ORP	-999 to +999 mV	0.1 mV	±20 mV
Depth & Level Medium Shallow Vented Level	0 to 200 ft, 61 m 0 to 30 ft, 9.1 m 0 to 30 ft, 9.1 m	0.001 ft, 0.001 m 0.001 ft, 0.001 m 0.001 ft, 0.001 m	±0.4 ft, ±0.12 m ±0.06 ft, ±0.02 m ±0,01 ft, 0.003 m

Report outputs of specific conductance (conductivity corrected to 25°C), resistivity, and total dissolved solids are also provided. These values are automatically calculated from conductivity according to algorithms found in Standard Methods for the Examination of Water and Wastewater (ed 1989)

YSI 600XL & 600XLM Sonde Specifications					
Medium	STATE	Fresh, sea or polluted water			
Temperature	Operating Storage	-5 to +50°C -10 to +60°C			
Communications		RS-232, SDI-12			
Software		EcoWatch*			
Dimensions 490XL I 490XLM	Diameter tength Weight	1.65 in, 4.19 cm 1.65 in, 4.9 cm 16 in, 40.6 cm 21.3 in, 54.1 cm 1.3 lbs, 0.59 kg 1.5 lbs, 0.69 kg			
Power	External	12 V D@			

Internal (600XIM only) 4 AA size alkaline batteries

YSI model 5083 flow cell and 600XL. This is an ideal combination for groundwater applications.

HI 98129

Combo pH/EC/TDS/Temperature Tester with Low Range EC

Description

The HI 98129 Combo waterproof tester offer high accuracy pH, EC/TDS and temperature measurements in a single tester! No more switching between meters for your routine measurements. The waterproof Combo (it even floats) has a large easy-to-read, dual-level LCD and automatic shut-off. pH and EC/TDS readings are automatically compensated for the effects of temperature (ATC). This technologically advanced tester has a replaceable pH electrode cartridge with an extendable cloth junction as well as an EC/TDS graphite electrode that resists contamination by salts and other substances. This gives these meters a greatly extended life. Your tester no longer needs to be thrown away when the pH sensor is exhausted.

The EC/TDS conversion factor is user selectable as is the temperature compensation coefficient (ß). Fast, efficient, accurate and portable, the Combo pH, EC/TDS and temperature tester brings you all the features you've asked for and more!

Specifications

Range	pН	0.00 to 14.00 pH
Range	EC	0 to 3999 µS/cm
Range	TDS	0 to 2000 ppm
Range	Temperature	0.0 to 60.0°C / 32 to 140.0°F
Resolution	рН	0.01 pH
Resolution	EC	1 µS/cm
Resolution	TDS	1 ppm
Resolution	Temperature	0.1°C / 0.1°F
Accuracy	pН	±0.05 pH
Accuracy	EC/TDS	±2% F.S.
Accuracy	Temperature	±0.5°C/±1°F
Temperature		pH: automatic; EC/TDS: automatic with ß adjustable
Compensation		from 0.0 to 2.4% / °C
Calibration	pН	automatic, 1 or 2 points with 2 sets of memorized
		buffers
		(pH 4.01 / 7.01 / 10.01 or 4.01 / 6.86 / 9.18)
Calibration	EC/TDS	automatic, 1 point
TDS Conversion Factor	or	adjustable from 0.45 to 1.00
pH Electrode		HI 73127 (replaceable; included)
Environment		0 to 50°C (32 to 122°F); RH max 100%
Battery Type / Life		4 x 1.5V / approx. 100 hours of continuous use;
		auto-off after 8 minutes of non-use
Dimensions		163 x 40 x 26 mm (6.4 x 1.6 x 1.0")
Weight		100 g (3.5 oz.)

HQ30d Portable pH, Conductivity, Dissolved Oxygen (DO), ORP, and ISE Multi-Parameter Meter

☆☆☆☆★ 5/5 日

Road 1 Inviow White a review # ollow this product

Portable meter measures critical water quality parameters - without the need for multiple

Bingle input sharred for Berbie measurement of pH. Cerebashvey. Dissolved Organic (DO), BOD, ORP Ammonia. Ammonium Fluorida Chlorida Sodium, and temperature—any intel®CAL™ smart probe

Intuitive user interface for simple operation and accurate results Guided calleration and chack standard reviews reduce calibration errors. Stabilizations are the source chair you can trust the source; of the results

Trust your measurements - IntelliCAL ^{the} smart probes store all calibrations in the probes Calibration hallon silver easils and easy change out of probes without re-milestery. The HCd¹² smart system more numbers, current satisfactor door, user D, sample D time, and does automatically in the circle log is complete GLP trocatality.

Designed for demanding conditions Rugged waterproof (PGT) meta provides worry-tree settable operation in lab or fold emiscorns

Convenient kit includes everything you need to start teating Meter kit includes 4 AA batteries quick-start guide, user manual and documentation CD

Specifications

AC and USB Operation

Automatic Buffer Recognition

Color-coded 4 01,7 00 10 01 pH

RUPAC 1 679 4 005,7 000 10 01 12, 12 45

DIN 1 09 4 65, 9323

User-defined custam buffer sets

Barrenetric Pressure Measurement For extornatic compensation of DO when using an LDO or LBOD probe

Battery Requirements 4 88

Benchtop with stand

BOD5/CBOD resolution Available when used with Hach WIMS BOD Manager software

Cable resistance correction Digital - not reeded

Calibration curves display Calibration summary data legged and displayed

Calibration Intervals/Alerts/Reminder 2 hours to 7 days Compliance CE WEEE

Conductivity Accuracy 2 0 5 % from (1µS/cm = 200 mS/cm) Conductivity measurement 5 different stability modes Conductivity Measurement Range 0 01 µS/cm to 200 mS/cm 0 01 µS/cm with 2 digits Conductivity resolution Custom Calibration Standards User-defined standard sets

Download via USB connection to PC or flash stick Automatically transfer entire data log or as readings are taken Data Export.

500 results

Digital (Intelligent) electrode inputs 2

Dimensions (H x W x D) 7 8 in x 3 7 in x 1 4 in 197 mm x 95 mm x 36 mm)

Display readings from one or two probes
Simultaneous readings from two probes (H44dd orly)
pH pH, mV emperature
Conductivity Conductivity TUS salarity, realstivity lemmerature
LIGO disacolved copyen, pressure, temperature
LIGO disacolved copyen, pressure, temperature
Sodium Sodium mV, temperature

Display Lock Function Continuous measurement or press to read mode available with averaging function for LDO measurement.

240 x 160 juice Display readings from one or two probes pH, pH, mV, temparature Conductivity Conductivity, TDS satisfy resistavity temperature LDD disastived copyen, pressure, temperature ORP/Redox mV, temperature Sodiam, Sodium, mV temperature Display Typo

DO Measurement Range 0 01 to 20 mg/L (0 to 200%) DO Resolution 0 01 mg/L

Fixed Buffer Selection

(UPAC standards (DIN 19266 or Technical buffer D.N 19267) or 4-7-10 series or user

M12 digital (1) for intelliCAL probes

Languages:

English French, German (talian Spanish, Danish Dutch Pollah Portuguese Turkish, Sweetish Czech, Russian

mV Measurement at Stable Reading 5 (auto) stabilization settings

mV Resolution 0 1 mV

Operating Error Messages Test messages displayed

Operating Humidity 90 % relative humbirty (non-condensing Operating Interface

Operating Temperature 5 to 45 °C ORP Electrode Calibration Predefined ORP standards (netuding Zobell's sistution)

USB to PC / flash stick PC Data Transfer Software Included pH Measurement at stable reading 5 stabilization settings Printer Optional accessory Salinity Resolution 0.01 ppl

Water Resistance Meter Cecing 1 meter submersion for 30 minutes (IP67)

3 years

Weight. 0 74 lbs (0 335 kg)

Warranty

1 of 1

2100P and 2100P IS Portable Turbidimeter

Features and Benefits

Laboratory Quality in a Portable Unit

The Hach 2100P and 2100P IS Portable Turbidimeters offer a level of performance previously possible only with laboratory instruments. Microprocessor-controlled operation and Hach's unique Ratio[™] optics bring great accuracy, sensitivity, and reliability to field and in-plant testing.

Two Models for Specific Requirements

- 2100P Turbidimeter—Get fast, accurate turbidity testing in the field or the lab, over a wide range of samples.
 Compliant with USEPA Method 180.1 design criteria.
- 2100P IS Turbidimeter—Designed to meet international standards that mandate measurement using an LED light source.

The two-detector optical system compensates for color in the sample, light fluctuation, and stray light, enabling analysts to achieve laboratory-grade performance on a wide range of samples, even under difficult, onsite conditions.

The Hach 2100P and 2100P IS Portable Turbidimeters bring laboratory-level performance on-site, offering fast, accurate results and the ease-of-use analysts demand in the field.

With a measurement range of 0 to 1000 NTU and a resolution of 0.01 NTU, the 2100P turbidimeter is ideal for regulatory monitoring, process control or field studies.

Specifications*

	2100P	2100P IS
Measurement Method	Nephelometric Ratio	
Regulatory	Meets EPA Method 180.1	Meets EN ISO 7027
Light Source	Tungsten lamp	Light-emitting diode (LED) @ 860 nm
Range		
Automatic Range Mode	0 to 1000 NTU	0 to 1000 FNU
Manual Range Selection	0 to 9.99, 0 to 99.9 and 0 to 1000 NTU	0 to 9.99, 0 to 99.9 and 0 to 1000 FNU
Accuracy	±2% of reading plus stray light	
Repeatability	±1% of reading, or 0.01 NTU, whichever is greater	±1% of reading, or 0.01 FNU, whichever is greater
Resolution	0.01 on lowest range	
Signal Averaging	Selectable on/off	
Power Requirement	4 AA alkaline batteries or optional battery eliminator	
Battery Life, Typical	300 tests with signal average mode off	
	180 tests with signal average mode on	
Operating Temperature	0 to 50°C (32 to 122°F)	
Sample Required	15 mL (0.5 oz.)	
Sample Cells	60 x 25 mm (2.36 x 1 in.) borosilicate glass with screv	w caps
Dimensions	22.2 x 9.5 x 7.9 cm (8.75 x 3.75 x 3.12 in.)	
Weight	0.5 kg (1.1 lb.); shipping weight 2.7 kg (6 lb.)	
Warranty	2 years	

*Specifications subject to change without notice.

2100Q and 2100Q is Portable Turbidimeter

The Hach 2100Q and 2100Q is Portable Turbidimeters offer unsurpassed ease of use and accuracy in turbidity measurement. Only Hach offers this unique combination of advanced features, such as assisted calibration and simplified data transfer, and measurement innovation, giving you accurate results every time.

Easy Calibration and Verification

Hach 2100Q and 2100Q *is* Portable Turbidimeters provide confidence your measurements are right every time. On-screen assisted calibration and verification save you time and ensure accuracy. With an easy-to-follow interface, complicated manuals are not needed to perform routine calibrations. Single-standard RapidCal™ calibration offers a simplified solution for low level measurements.

Simple Data Transfer

Data transfer with the optional USB + Power Module is simple, flexible, and doesn't require additional software. All data can be transferred to the module and easily downloaded to your computer with a USB connection, providing superior data integrity and availability. With two different module options, you can customize connectivity and power to meet your unique needs.

Accurate for Rapidly Settling Samples

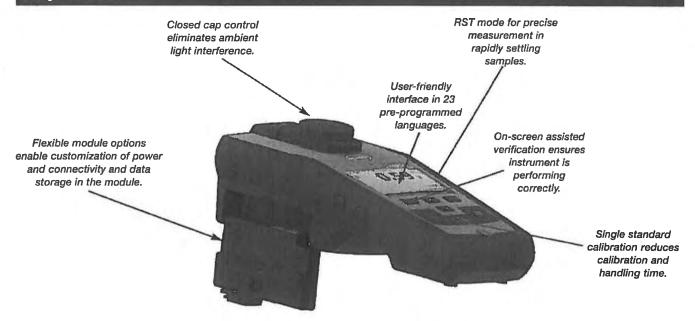
The Hach 2100Q Portable Turbidimeter incorporates an innovative Rapidly Settling Turbidity™ mode to provide accurate, repeatable measurements for difficult to measure, rapidly settling samples. An exclusive algorithm that

calculates turbidity based on a series of automatic readings eliminates redundant measurements and estimating.

Convenient Data Logging

Up to 500 measurements are automatically stored in the instrument for easy access and backup. Stored information includes: date and time, operator ID, reading mode, sample ID, sample number, units, calibration time, calibration status, error messages and the result.

Optical System for Precision in the Fleld


The two-detector optical system compensates for color in the sample, light fluctuation, and stray light, enabling analysts to achieve laboratory-grade performance on a wide range of samples, even under difficult site conditions.

Two Models for Specific Requirements

- 2100Q Turbidimeter—Compliant with USEPA Method 180.1 design criteria.
- 2100Q is Turbidimeter—Compliant with ISO 7027 design criteria.

HACH

Key Features

Specifications*

Measurement Method

Ratio turbidimetric determination using a primary nephelometric light scatter signal (90°) to the transmitted light scatter signal.

Regulatory

2100Q: Meets EPA Method 180.1 2100Q is: Meets ISO 7027

Light Source

2100Q: Tungsten filament lamp

2100Q is: Light-emitting diode (LED) @ 860 nm

Range

0 to 1000 NTU (FNU)

Accuracy

±2% of reading plus stray light from 0 to 1000 NTU

Repeatability

±1% of reading, or 0.01 NTU (FNU), whichever is greater

Resolution

0.01 NTU on lowest range

Stray Light

<0.02 NTU (FNU)

Signal Averaging

Selectable on/off

Detector

Silicon photovoltaic

Reading Modes (user selectable)

Normal (Push to Read) Signal Averaging Rapidly Settling Turbidity

Data Logger 500 records

Power Requirement

110-230 Vac, 50/60 Hz (with Power or USB+Power Module)

4 AA alkaline batteries

Rechargeable NiMH (for use with USB+Power Module)

Operating Conditions

Temperature: 0 to 50°C (32 to 122°F)
Relative Humidity: 0 to 90% @ 30°C,
0 to 80% @ 40°C, 0 to 70% @ 50°C, noncondensing

Storage Conditions

-40 to 60°C (-40 to 140°F), instrument only

Languages

English, French, German, Italian, Spanish, Portuguese (BR), Portuguese (PT), Bulgarian, Chinese, Czech, Danish, Dutch, Finnish, Greek, Hungarian, Japanese, Korean, Polish, Romanian, Russian, Slovenian, Swedish, Turkish

Interface

Optional USB

Instrument Enclosure Rating

IP67 (closed lid, battery compartment excluded)

Protection Class

Power Supply: Class II

Certification

CE certified

Sample Required

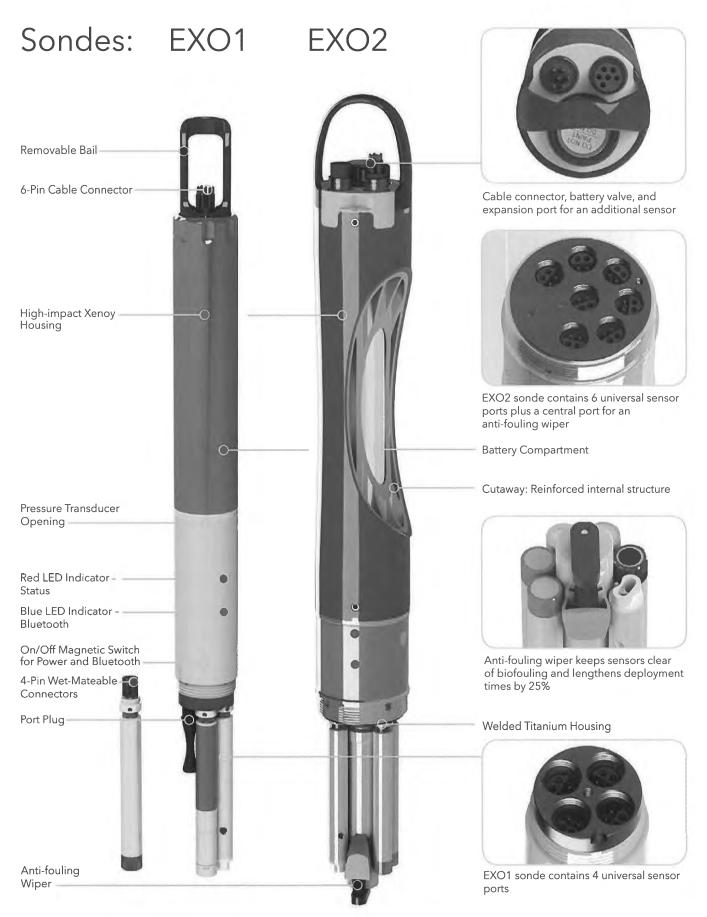
15 mL (0.3 oz.)

Sample Cells

60 x 25 mm (2.36 x 1 in.) borosilicate glass with screw cap

Dimensions

22.9 x 10.7 x 7.7 cm (9.0 x4.2 x 3.0 in.)


Weight

527 g (1.16 lb) without batteries

618 g (1.36 lb) with four AA alkaline batteries

Warranty

1 year

Instrument Specifications*

EXO1 Sonde		
Ports	4 sensor ports Peripheral port: 1 power communication	port
Size	Diameter: 4.70 cm (1.85 in) Length: 64.77 cm (25.50 in)	
Weight	1.42 kg (3.15 lbs) with 4 probes, guard a	nd batteries installed
EXO2 Sonde		
Ports	7 sensor ports (6 ports available when ce Peripheral ports: 1 power communicatio	entral wiper used) n port; 1 auxiliary expansion port
Size	Diameter: 7.62 cm (3.00 in) Length: 71.10 cm (28.00 in)	
Weight	3.60 kg (7.90 lbs) with 5 probes, guard a	nd batteries installed
Sondes		
Operating Temperature	-5 to 50°C	
Storage Temperature	-20 to 80°C (except 0 to 60°C for pH and	pH/ORP sensors)
Depth Rating	0 to 250 m (0 to 820 ft)	
Communications	Computer Interface: Bluetooth wireless t Output Options: USB with signal output a	technology, RS-485, USB adapter (SOA); RS-232 & SDI-12 with DCP-SOA
Sample Rate	Up to 4 Hz	
Battery Life	90 days**	
Data Memory	512 MB total memory; >1,000,000 logge	
Sensors		Calculated Parameters
Ammonium	ORP	Salinity
Chloride	рН	Specific Conductance
Conductivity	Temperature	Total Dissolved Solids
Depth	Total Algae (Chlorophyll + BGA-PC or PE)	Total Suspended Solids
Dissolved Oxygen	Turbidity	
Fluorescent Dissolved Organic Matter (fDOM)	Vented Level	
Nitrate		
EXO Handheld	WW.L. 40.00 44.70 A	
Size	Width: 12.00 cm (4.72 in) Height: 25.00 cm (9.84 in)	
Weight	0.71 kg (1.56 lbs) without batteries	
Operating System	Windows CE 5.0	
Operating Temperature	-10 to 50°C	
Storage Temperature	-20 to 80°C	
IP Rating	IP-67	
Data Memory	2 GB total memory; >2,000,000 data set	S
Accessories		C 1.
Cables (vented and non-vented)	Flow cells	Sonde/sensor guard
Carrying case	KOR software	Calibration cup
DCP Signal Output Adapter	USB Signal Output Adapter	Anti-fouling components
Warranty 3 months	Replaceable reagent modules for ammo	onium, chloride, and nitrate
1 Year	Optical DO membranes and replaceable	e reagent moldules for pH and pH/ORP
2 Years	Cables; sonde bulkheads; handheld; cond	uctivity, temperature, depth, and optical sensors m, chloride, and nitrate sensors; and accessorie

 $[\]mbox{*}$ Specifications indicate typical performance and are subject to change. Please check EXOwater.com for up-to-date information.

EXO Bluetooth modules comply with Part 15C of FCC Rules and have FCC, CE Mark and C-tick approval. Bluetooth-type approvals and regulations can be country specific. Check local laws and regulations to insure that the use of wireless products purchased from Xylem are in full compliance.

^{**} Typically 90 days at 20°C at 15-minute logging interval; temperature/conductivity, pH/ORP, DO, and turbidity sensors installed on EXO1; or temperature/conductivity, pH/ORP, DO, total algae, and turbidity sensors installed with central wiper that rotates once per logging interval on EXO2. Battery life is heavily dependent on sensor configuration.

Sensor Specifications*

Sensor	Range	Accuracy*	Response	Resolution	
Ammonium ¹¹ (ammonia with pH sensor)	0 to 200 mg/L ¹	±10% of reading or 2 mg/L-N, w.i.g.	-	0.01 mg/L	
Barometer	375 to 825 mmHg	±1.5 mmHg from 0 to 50°C	-	0.1 mmHg	
Blue-green Algae Phycocyanin (PC) (part of Total Algae sensor)	0 to 100 RFU; 0 to 100 μg/L PC	Linearity: $R^2 > 0.999$ for serial dilution of Rhodamine WT solution from 0 to 100 µg/mL PC equivalents	T63<2 sec	0.01 RFU; 0.01 µg/L PC	
Blue-green Algae Phycoerythrin (PE) (part of Total Algae sensor)	0 to 100 RFU; 0 to 280 μg/L PE	Linearity: R ² > 0.999 for serial dilution of Rhodamine WT solution from 0 to 280 µg/mL PE equivalents	T63<2 sec	0.01 RFU; 0.01 μg/L PE	
Chloride ¹¹	0 to 1000 mg/L-Cl ²	±15% of reading or 5 mg/L-Cl, w.i.g.	-	0.01 mg/L	
Chlorophyll (part of Total Algae sensor)	0 to 400 μg/L Chl; 0 to 100 RFU	Linearity: $R^2 > 0.999$ for serial dilution of Rhodamine WT solution from 0 to 400 μ g/L Chl equivalents	T63<2 sec	0.01 µg/L Chl; 0.01 RFU	
Conductivity ³	0 to 200 mS/cm	0 to 100: ±0.5% of reading or 0.001 mS/cm, w.i.g.; 100 to 200: ±1% of reading	T63<2 sec	0.0001 to 0.01 mS/cm (range dependent)	
	0 to 10 m (0 to 33 ft)	±0.04% FS (±0.004 m or ±0.013 ft)			
Depth ⁴ (non-vented)	0 to 100 m (0 to 328 ft)	±0.04% FS (±0.04 m or ±0.13 ft)	T/2 -0	0.001 m (0.001 ft) (auto-ranging)	
(non vened)	0 to 250 m (0 to 820 ft)	±0.04% FS (±0.10 m or ±0.33 ft)	T63<2 sec		
Vented Level	0 to 10 m (0 to 33 ft)	±0.03% FS (±0.003 m or ±0.010 ft)			
Dissolved Oxygen	0 to 500% air saturation	0 to 200%: ±1% of reading or 1% saturation, w.i.g.; 200 to 500%: ±5% of reading ⁵	T/2 . 5 . 4	0.1% air saturation	
Optical	0 to 50 mg/L	0 to 20 mg/L: ± 0.1 mg/L or 1% of reading, w.i.g.; 20 to 50 mg/L: $\pm 5\%$ of reading ⁵	T63<5 sec ⁶	0.01 mg/L	
fDOM	0 to 300 ppb Quinine Sulfate equivalents (QSE)	Linearity: R ² > 0.999 for serial dilution of 300 ppb QS solution Detection Limit: 0.07 ppb QSE	T63<2 sec	0.01 ppb QSE	
Nitrate ¹¹	0 to 200 mg/L-N ¹	±10% of reading or 2 mg/L-N, w.i.g.	_	0.01 mg/L	
ORP	-999 to 999 mV	±20 mV in Redox standard solutions	T63<5 sec 7	0.1 mV	
рН	0 to 14 units	± 0.1 pH units within ± 10 °C of calibration temp; ± 0.2 pH units for entire temp range ⁸	T63<3 sec ⁹	0.01 units	
Salinity (Calculated from Conductivity and Temperature)	0 to 70 ppt	±1.0% of reading or 0.1 ppt, w.i.g.	T63<2 sec	0.01 ppt	
Specific Conductance (Calculated from Cond. and Temp.)	0 to 200 mS/cm	±0.5% of reading or .001 mS/cm, w.i.g.	_	0.001, 0.01, 0.1 mS/cm (auto-scaling)	
Temperature	-5 to 50°C	-5 to 35°C: ±0.01°C ¹⁰ 35 to 50°C: ±0.05°C ¹⁰	T63<1 sec	0.001 °C	
Total Dissolved Solids (TDS) (Calculated from Conductivity and Temperature)	0 to 100,000 g/L Cal constant range 0.30 to 1.00 (0.64 default)	Not Specified	-	variable	
Total Suspended Solids (TSS) (Calculated from Turbidity and user reference samples)	0 to 1500 mg/L	Not Specified	T63<2 sec	variable	
Turbidity ¹¹	0 to 4000 FNU	0 to 999 FNU: 0.3 FNU or ±2% of reading, w.i.g.; 1000 to 4000 FNU: ±5% of reading ¹²	T63<2 sec	0 to 999 FNU: 0.01 FNU; 1000 to 4000 FNU: 0.1 FNU	

All sensors have a depth rating to 250 m (820 ft), except shallow and medium depth sensors and ISEs. EXO sensors are not backward compatible with 6-Series sondes.

* Specifications indicate typical performance and are subject to change. Please check EXOwater.com for up-to-date information.

Accuracy specification is attained immediately following calibration under controlled and stable environmental conditions. Performance in the natural environment may vary from quoted specification.

Accuracy specifications apply to conductivity levels of 0 to 100,000 µS/cm.
 Relative to calibration gases
 When transferred from air-saturated water to stirred deaerated water
 When transferred from water-saturated air to Zobell solution

² 0-40°C ¹ 0-30°C w.i.g. = whichever is greater

¹⁰⁻³⁰ C 20-40 C W.I.g. = wnicnever is greater 3 Outputs of specific conductance (conductivity corrected to 25°C) and total dissolved solids are also provided. The values are automatically calculated from conductivity according to algorithms found in *Standard Methods for the Examination of Water and Wastewater* (Ed. 1989).

Within thanserred from water-saturated air to Zoben solution
 Within the environmental pH range of pH 4 to pH 10
 On transfer from water-saturated air to rapidly stirred air-saturated water at a specific conductance of 800 μS/cm at 20°C; T63<5 seconds on transfer from water-saturated air to slowly-stirred air-saturated water.
 Temperature accuracy traceable to NIST standards

¹¹ Calibration: 1-, 2-, or 3-point, user-selectable 12 Specification is defined in AMCO-AEPA Standards

FH950 Portable Velocity Meter with 20' Cable

Product #: FH950.10020 USD Price: \$4,585.00 Quantity

USD Price: \$4,585.0 Ships within 2 weeks

Reduce manhours 50%

The step-by-step user interface simplifies programming, delivers real-time data, and downloads directly to PC allowing a single person to take the readings and eliminating post site visit manual data transfer from logbook to PC

Automatically calculates total discharge based on USGS and ISO methods

Reduces time to manually calculate and likelihood of errors

Real-time velocity graphed on color display

Visualize velocity trends quickly

Lowest maintenance solution on the market

Electromagnetic velocity sensor with no moving parts never requires mechanical maintenance

Lightweight, rugged portable meter

Only 1.5 pounds

What's in the box

FH950.1 System Includes:

- Portable Velocity Meter
- Electromagnetic Sensor with 20' cable
- Fabric Carrying Case
- Adjustable Meter Rod Mount
- Universal Sensor Mount
- Battery Charger with Domestic/International Plug Adapters
- USB Cable
- Lanyard
- Sensor Screw Kit
- Absorbent Wipe

Specifications

Accuracy 2: \pm 2% of reading \pm 0.05 ft/s (\pm 0.015 m/s) through the range of 0 to 10 ft/s

(0 to 3.04 ms/s); ± 4% of reading from 10 to 16 ft/s (3.04 to 4.87 m/s)

Battery Life: heavy typical day use; 68°F (20°C)

Display: LCD: Color, LCD 3.5 QVGA transflective (readable in direct sunlight)

Keypad: Alpha-numerica

Operating Temperature Range: -20 to 55 °C

Range: to ft/s

Resolution: Measurement Resolution - <10: 0.001; <100: 0.01; >100: 0.1

Storage Conditions: -20 °C to 60 °C

Appendix D. Chlorophyll a Field Form

NEORSD Chlorophyll a Sampling Field Sheet

				Collectors	<u> </u>				
Location:									
RM:				Time:					
Lat/Long:_									
Number of	Rocks:		Total Area Scra	ped:	cm ²	Diameter to Area C	anuaraian l		
Diameter o	f individual s	scrape	Area of individu	al scrape		Diameter to Area C Diameter (cm) Area	ea (cm2)		
1			1			1.6	2.011		
			2				2.27		
3			3			1.8	2.545		
4			4			1.9	2.835		
5			5			2.0	3.142		
6			6			2.1	3.464		
7			7			2.2	3.801		
8			8			2.3	4.155		
9			9						
10			10			Total Sample Volum	ne	_ml	
11			11		Filter 1	LABLynx ID			
12			12			Volml			
13			13						
14			14		Filter 2	LABLynx ID			
			15			Volml			
16			16						
17			17		Filter 3	LABLynx ID			
			18			Volml			
			19						
			20						
21			21			Water Column Chloro			
			22		Filter 1	LABLynx ID			
			23			Volml			
24			24						
25			25		Filter 2	LABLynx ID			
			Total:			Volml			
					Filter 3	LABLynx ID			
						Volml			
				!					
Flow:	None	Low	Normal	Elevated		High			
Turbidity:	Clear	Low	Moderate*	High*					
-	Jiour		Moderate	ı iigii					
*Explain							_		
Sky:	Overcast	Cloudy	Partly Cloudy	Mostly Cle	ar	Clear			
Canopy:	Open	Mostly Open	Partly Closed	Closed					

Riparian None Narrow L R Moderate L R Wide L R

Downstream Channel Direction	Record two most predominate substrates with an X, and check all present.					
330° N 30° 60° 270° W E 90° 120° 120°	Riffle Run Reach Boulder/Slabs Bedrock Boulder/Slabs Cobble Gravel Sand Silt Hardpan Detritus Artificial					
Clinometer Left Bank° Right Bank°	Substrate OriginLimestoneTillsRip-rapSandstoneShaleWetlandsLacustrineHardpanCoal Fines					
Left Bank° Right Bank°	Silt HeavyModerateNormalNone					
Left Bank° Right Bank°	EmbeddednessExtensiveModerateNormalNone					
Stream Widthsmmm						

Length of Reach: _____m

Stream Drawing

Appendix E. Laboratory Certifications

State of New Hampshire Environmental Laboratory Accreditation Program Awards PRIMARY NH ELAP ACCREDITATION

to

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES of

CUYAHOGA HEIGHTS, OH

For the matrix, method and analytes listed on the latest Analyte List in accordance with the provisions on the 2009 TNI Standards and Env-C 300.

Certificate Number: 223821

Effective Date: 12/1/2021

Expiration Date: 11/30/2022

Laboratory ID: 2238

NORTHEAS/1/18/2021

Bill Hall

NH ELAP Program Manager

Method accreditation does not imply acceptance for NHDES compliance testing. Laboratory is required to use EPA-approved methods required by regulation.

Continuing accreditation status is dependent on successful ongoing participation in the program. Customers may verify the laboratory's current accreditation status by calling (603) 271-2998 or by visiting the NH ELAP website (https://www.des.nh.gov/water/drinking-water/new-hampshire-environmental-laboratory-accreditation-program).

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST **ANALYTE LIST NUMBER: 223821-A**

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES **4747 EAST 49TH STREET**

CUYAHOGA HEIGHTS OH 44125 216-641-6000

Lab ID: 2238

Analyte Code		Analyte Name	Effective Date	Expiration Date N	⁄ latri	x Category Ac	cr. Type
Method Code: 20211	.443	Method Ref: SM 9223 B (COLILERT® QUANTI-TR	AY®)	Revision: 23RD ED		Date: 2016	
2525	ESCHE	RICHIA COLI	03/23/2021	11/30/2022	D	MIC	NE
2500	TOTAL	COLIFORMS	03/23/2021	11/30/2022	D	MIC	NE
Method Code: 20213	449	Method Ref: SM 9223 B (COLILERT®-18 QUANTI-	-TRAY®)	Revision: 23RD ED		Date: 2016	
2525	ESCHE	RICHIA COLI	03/23/2021	11/30/2022	D	MIC	NE
2500	TOTAL	COLIFORMS	03/23/2021	11/30/2022	D	MIC	NE
Method Code: 20214	431	Method Ref: SM 9223 B (COLILERT®-18)		Revision: 23RD ED		Date: 2016	
2525	ESCHE	RICHIA COLI	03/23/2021	11/30/2022	D	MIC	NE
2500	TOTAL	COLIFORMS	03/23/2021	11/30/2022	D	MIC	NE
Method Code: 20214	442	Method Ref: SM 9223 B (COLILERT®)		Revision: 23RD ED		Date: 2016	
2525	ESCHE	RICHIA COLI	03/23/2021	11/30/2022	D	MIC	NE
2500	TOTAL	COLIFORMS	03/23/2021	11/30/2022	D	MIC	NE
Method Code: 10013	806	Method Ref: EPA 200.7		Revision: 4.4		Date: 1994	
1000	ALUMI	INUM	03/23/2021	11/30/2022	D	MET	NE
1015	BARIUI	M	03/23/2021	11/30/2022	D	MET	NE
1020	BERYLI	LIUM	03/23/2021	11/30/2022	D	MET	NE
1030	CADM	IUM	03/23/2021	11/30/2022	D	MET	NE
1035	CALCIL	JM	03/23/2021	11/30/2022	D	MET	NE
1040	CHRON	MIUM	03/23/2021	11/30/2022	D	MET	NE
1055	COPPE	R	03/23/2021	11/30/2022	D	MET	NE
1070	IRON		03/23/2021	11/30/2022	D	MET	NE
1085	MAGN	IESIUM	03/23/2021	11/30/2022	D	MET	NE
1090	MANG	ANESE	03/23/2021	11/30/2022	D	MET	NE
1105	NICKEL	L	03/23/2021	11/30/2022	D	MET	NE
1150	SILVER	l	03/23/2021	11/30/2022	D	MET	NE
1155	SODIU	M	03/23/2021	11/30/2022	D	MET	NE
1190	ZINC		03/23/2021	11/30/2022	D	MET	NE
Method Code: 10014	605	Method Ref: EPA 200.8		Revision: 5.4		Date: 1994	
1000	ALUMI	INUM	03/23/2021	11/30/2022	D	MET	NE
1005	ANTIM	IONY	03/23/2021	11/30/2022	D	MET	NE
1010	ARSEN	IIC	03/23/2021	11/30/2022	D	MET	NE
1015	BARIUI		03/23/2021	11/30/2022	D	MET	NE
1030	CADMI		03/23/2021	11/30/2022	D	MET	NE
1040	CHRON		03/23/2021	11/30/2022	D	MET	NE
1075	LEAD		03/23/2021	11/30/2022	D	MET	NE
- -			, -,	, ,	-		

This analyte list supersedes all previously issued analyte lists. Method accreditation does not imply acceptance for NHDES compliance testing. Laboratory is required to use EPA-approved methods required by regulation. Continuing accreditation status is dependent on successful ongoing participation in the program. Customers may verify the laboratory's current accreditation status by calling (603) 271-2998 or by visiting the NH ELAP website (https://www.des.nh.gov/water/drinking-water/new-hampshire-environmental-laboratory-accreditation-program).

Page 1 of 8

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST ANALYTE LIST NUMBER: 223821-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES 4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

1090	MAN	IGANESE	03/23/2021	11/30/2022	D	MET	NE
1105	NICK	EL	03/23/2021	11/30/2022	D	MET	NE
1140	SELE	SELENIUM		11/30/2022	D	MET	NE
1150	SILVI	ER	03/23/2021	11/30/2022	D	MET	NE
1165	THAI	LLIUM	03/23/2021	11/30/2022	D	MET	NE
1190	ZINC		03/23/2021	11/30/2022	D	MET	NE
Method Code: 10	036609	Method Ref: EPA 245.1		Revision: 3		Date: 1994	
1095	MER	CURY	03/23/2021	11/30/2022	D	MET	NE
Method Code: 10	011800	Method Ref: EPA 180.1		Revision: 2.0		Date: 1993	
2055	TUR	BIDITY	03/23/2021	11/30/2022	D	NMI	NE
Method Code: 10	013806	Method Ref: EPA 200.7		Revision: 4.4		Date: 1994	
1755	TOTA	AL HARDNESS AS CACO3	03/29/2021	11/30/2022	D	NMI	NE
Method Code: 10	053200	Method Ref: EPA 300.0		Revision: 2.1		Date: 1993	
1575	CHLC	DRIDE	03/23/2021	11/30/2022	D	NMI	NE
1810	NITR	ATE AS N	03/23/2021	11/30/2022	D	NMI	NE
1840	NITR	ITE AS N	03/23/2021	11/30/2022	D	NMI	NE
1870	ORTI	HOPHOSPHATE AS P	03/23/2021	11/30/2022	D	NMI	NE
2000	SULF	ATE	03/23/2021	11/30/2022	D	NMI	NE
Method Code: 10	067604	Method Ref: EPA 353.2		Revision: 2		Date: 1993	
1810	NITR	ATE AS N	03/23/2021	11/30/2022	D	NMI	NE
1820	NITR	ATE PLUS NITRITE AS N	03/23/2021	11/30/2022	D	NMI	NE
1840	NITR	ITE AS N	03/23/2021	11/30/2022	D	NMI	NE
Method Code: 10	070005	Method Ref: EPA 365.1		Revision: 2		Date: 1993	
1870	ORTI	HOPHOSPHATE AS P	03/23/2021	11/30/2022	D	NMI	NE
Method Code: 20	048617	Method Ref: SM 2510 B-2011		Revision:		Date: 2011	
1610	CON	DUCTIVITY	03/23/2021	11/30/2022	D	NMI	NE
Method Code: 20	050457	Method Ref: SM 2540 C		Revision: 23RD ED		Date: 2015	
1955	RESII	DUE-FILTERABLE (TDS)	03/23/2021	11/30/2022	D	NMI	NE
Method Code: 20	053127	Method Ref: SM 2550 B		Revision: 22ND ED		Date: 2010	
2030	TEM	PERATURE, DEG. C	03/23/2021	11/30/2022	D	NMI	NE
Method Code: 20	102414	Method Ref: SM 4500-F C-2011		Revision:		Date: 2011	
1730	FLUC	DRIDE	03/23/2021	11/30/2022	D	NMI	NE
Method Code: 20	105220	Method Ref: SM 4500-H+ B-2011		Revision:		Date: 2011	
1900	PH		03/23/2021	11/30/2022	D	NMI	NE
Method Code: 20		Method Ref: SM 9223 B (COLILERT® QUANTI-T	•	Revision: 23RD ED		Date: 2016	
2525	ESCH	HERICHIA COLI	03/23/2021	11/30/2022	N	MIC	NE
2500	TOTA	AL COLIFORMS	03/23/2021	11/30/2022	N	MIC	NE

This analyte list supersedes all previously issued analyte lists. Method accreditation does not imply acceptance for NHDES compliance testing. Laboratory is required to use EPA-approved methods required by regulation. Continuing accreditation status is dependent on successful ongoing participation in the program. Customers may verify the laboratory's current accreditation status by calling (603) 271-2998 or by visiting the NH ELAP website (https://www.des.nh.gov/water/drinking-water/new-hampshire-environmental-laboratory-accreditation-program).

Page 2 of 8

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST ANALYTE LIST NUMBER: 223821-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES 4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

Method Code: 20213449		Method Ref: SM 9223 B (COLILERT®-18 C	(UANTI-TRAY®)	Revision: 23RD ED		Date: 2016	
2525	ESCHI	ERICHIA COLI	03/23/2021	11/30/2022	Ν	MIC	NE
2500	TOTA	L COLIFORMS	03/16/2021	11/30/2022	N	MIC	NE
Method Code: 10013	806	Method Ref: EPA 200.7		Revision: 4.4		Date: 1994	
1000	ALUN	1INUM	12/01/2019	11/30/2022	Ν	MET	NE
1005	ANTI	MONY	12/01/2019	11/30/2022	Ν	MET	NE
1010	ARSEI	NIC	12/01/2019	11/30/2022	Ν	MET	NE
1015	BARIL	JM	12/01/2019	11/30/2022	Ν	MET	NE
1020	BERYI	LIUM	12/01/2019	11/30/2022	Ν	MET	NE
1030	CADN	IIUM	12/01/2019	11/30/2022	Ν	MET	NE
1035	CALCI	UM	12/01/2019	11/30/2022	Ν	MET	NE
1040	CHRO	MIUM	12/01/2019	11/30/2022	Ν	MET	NE
1050	COBA	LT	12/01/2019	11/30/2022	Ν	MET	NE
1055	COPP	ER	12/01/2019	11/30/2022	Ν	MET	NE
1070	IRON		12/01/2019	11/30/2022	N	MET	NE
1075	LEAD		12/01/2019	11/30/2022	Ν	MET	NE
1085	MAGI	NESIUM	12/01/2019	11/30/2022	N	MET	NE
1090	MAN	GANESE	12/01/2019	11/30/2022	Ν	MET	NE
1100	MOLY	'BDENUM	12/01/2019	11/30/2022	Ν	MET	NE
1105	NICKE	EL .	12/01/2019	11/30/2022	Ν	MET	NE
1125	POTA	SSIUM	12/01/2019	11/30/2022	Ν	MET	NE
1140	SELEN	IIUM	12/01/2019	11/30/2022	N	MET	NE
1150	SILVE	R	12/01/2019	11/30/2022	Ν	MET	NE
1155	SODIU	JM	12/01/2019	11/30/2022	Ν	MET	NE
1160	STRO	NTIUM	12/01/2019	11/30/2022	Ν	MET	NE
1165	THAL	LIUM	12/01/2019	11/30/2022	Ν	MET	NE
1175	TIN		12/01/2019	11/30/2022	Ν	MET	NE
1180	TITAN	IIUM	12/01/2019	11/30/2022	Ν	MET	NE
1185	VANA	DIUM	12/01/2019	11/30/2022	Ν	MET	NE
1190	ZINC		12/01/2019	11/30/2022	Ν	MET	NE
Method Code: 10014605 Method Ref: EPA 200.8			Revision: 5.4		Date: 1994		
1000	ALUN	IINUM	12/01/2019	11/30/2022	N	MET	NE
1005	ANTIN	MONY	12/01/2019	11/30/2022	N	MET	NE
1010	ARSEI	NIC	12/01/2019	11/30/2022	N	MET	NE
1015	BARIL	Л М	12/01/2019	11/30/2022	N	MET	NE
1020	BERYI	LIUM	12/01/2019	11/30/2022	N	MET	NE
1030	CADN	1IUM	12/01/2019	11/30/2022	N	MET	NE

This analyte list supersedes all previously issued analyte lists. Method accreditation does not imply acceptance for NHDES compliance testing. Laboratory is required to use EPA-approved methods required by regulation. Continuing accreditation status is dependent on successful ongoing participation in the program. Customers may verify the laboratory's current accreditation status by calling (603) 271-2998 or by visiting the NH ELAP website (https://www.des.nh.gov/water/drinking-water/new-hampshire-environmental-laboratory-accreditation-program).

Page 3 of 8

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST ANALYTE LIST NUMBER: 223821-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES 4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

1035	CALC	IUM	12/01/2019	11/30/2022	N	MET	NE
1040	CHRO	DMIUM	12/01/2019	11/30/2022	Ν	MET	NE
1050	COBA	ALT	12/01/2019	11/30/2022	N	MET	NE
1055	COPF	PER	12/01/2019	11/30/2022	N	MET	NE
1070	IRON		12/01/2019	11/30/2022	Ν	MET	NE
1075	LEAD		12/01/2019	11/30/2022	Ν	MET	NE
1085	MAG	NESIUM	12/01/2019	11/30/2022	Ν	MET	NE
1090	MAN	GANESE	12/01/2019	11/30/2022	Ν	MET	NE
1100	MOL	YBDENUM	12/01/2019	11/30/2022	Ν	MET	NE
1105	NICK	EL	12/01/2019	11/30/2022	Ν	MET	NE
1125	POTA	SSIUM	12/01/2019	11/30/2022	Ν	MET	NE
1140	SELEI	NIUM	12/01/2019	11/30/2022	N	MET	NE
1150	SILVE	R	12/01/2019	11/30/2022	N	MET	NE
1155	SODI	UM	12/01/2019	11/30/2022	N	MET	NE
1160	STRO	NTIUM	12/01/2019	11/30/2022	N	MET	NE
1165	THAL	LIUM	12/01/2019	11/30/2022	N	MET	NE
1175	TIN		12/01/2019	11/30/2022	N	MET	NE
1180	TITA	NUM	12/01/2019	11/30/2022	N	MET	NE
1185	VANA	ADIUM	12/01/2019	11/30/2022	N	MET	NE
1190	ZINC		12/01/2019	11/30/2022	N	MET	NE
Method Code: 10	0036609	Method Ref: EPA 245.1		Revision: 3		Date: 1994	
1095	MER	CURY	12/01/2019	11/30/2022	Ν	MET	NE
Method Code: 10	0237204	Method Ref: EPA 1631E		Revision:		Date: 2002	
1095	MER	CURY	12/01/2019	11/30/2022	N	MET	NE
Method Code: 20		Method Ref: SM 3500-CR B-2011		Revision:		Date: 2011	
1045		DMIUM VI	12/01/2019	11/30/2022	N	MET	NE
Method Code: 10		Method Ref: EPA 180.1	42/04/2040	Revision: 2.0		Date: 1993	NE
2055 Method Code: 10	TURE	Method Ref: EPA 200.7	12/01/2019	11/30/2022 Revision: 4.4	N	NMI	NE
1755		LL HARDNESS AS CACO3	03/29/2021	11/30/2022	N	Date: 1994 NMI	NE
		Method Ref: EPA 200.8	03/23/2021	Revision: 5.4	14	Date: 1994	142
1755		LL HARDNESS AS CACO3	03/29/2021	11/30/2022	N	NMI	NE
Method Code: 10	0053200	Method Ref: EPA 300.0		Revision: 2.1		Date: 1993	
1540	BRO	MIDE	12/01/2019	11/30/2022	N	NMI	NE
1575	CHLC	PRIDE	12/01/2019	11/30/2022	N	NMI	NE
1810	NITR	ATE AS N	12/01/2019	11/30/2022	Ν	NMI	NE
1840	NITR	TE AS N	12/01/2019	11/30/2022	Ν	NMI	NE

This analyte list supersedes all previously issued analyte lists. Method accreditation does not imply acceptance for NHDES compliance testing. Laboratory is required to use EPA-approved methods required by regulation. Continuing accreditation status is dependent on successful ongoing participation in the program. Customers may verify the laboratory's current accreditation status by calling (603) 271-2998 or by visiting the NH ELAP website (https://www.des.nh.gov/water/drinking-water/new-hampshire-environmental-laboratory-accreditation-program).

Page 4 of 8

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST ANALYTE LIST NUMBER: 223821-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES 4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

1870	ORT	HOPHOSPHATE AS P	12/01/2019	11/30/2022	N	NMI	NE
2000	SULF	FATE	12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 100	055206	Method Ref: EPA 310.2		Revision:		Date: 1974	
1505	ALKA	ALINITY AS CACO3	12/01/2019	11/30/2022	N	NMI	NE
Method Code: 10063602 Method Ref: EPA 350.1			Revision: 2		Date: 1993		
1515	AMN	MONIA AS N	12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 100	065404	Method Ref: EPA 351.2		Revision: 2		Date: 1993	
1795	TOT	AL KJELDAHL NITROGEN (TKN)	12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 100	067604	Method Ref: EPA 353.2		Revision: 2		Date: 1993	
1810	NITE	RATE AS N	12/01/2019	11/30/2022	Ν	NMI	NE
1820	NITE	RATE PLUS NITRITE AS N	03/09/2020	11/30/2022	Ν	NMI	NE
1840	NITE	RITE AS N	03/23/2021	11/30/2022	N	NMI	NE
Method Code: 10070005 Method Ref: EPA 365.1			Revision: 2		Date: 1993		
1870	ORT	HOPHOSPHATE AS P	12/01/2019	11/30/2022	N	NMI	NE
1910	TOT	AL PHOSPHORUS	12/01/2019	11/30/2022	N	NMI	NE
Method Code: 100	077404	Method Ref: EPA 410.4		Revision: 2		Date: 1993	
1565	CHE	MICAL OXYGEN DEMAND (COD)	12/01/2019	11/30/2022	N	NMI	NE
Method Code: 100	079400	Method Ref: EPA 420.1		Revision:		Date: 1978	
1905	TOT	AL PHENOLICS	12/01/2019	11/30/2022	N	NMI	NE
Method Code: 100	081400	Method Ref: EPA 445		Revision: 1.2		Date: 1997	
9345	CHL	OROPHYLLS	12/01/2019	11/30/2022	N	NMI	NE
Method Code: 102	261617	Method Ref: EPA 1664B		Revision:		Date: 2010	
1803	N-HI	EXANE EXTRACTABLE MATERIAL (O&G)	12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 200	048617	Method Ref: SM 2510 B-2011		Revision:		Date: 2011	
1610	CON	IDUCTIVITY	03/23/2021	11/30/2022	N	NMI	NE
Method Code: 200	049438	Method Ref: SM 2540 B-2015		Revision:		Date: 2015	
1950	RESI	DUE-TOTAL (TS)	08/22/2021	11/30/2022	Ν	NMI	NE
Method Code: 200	050457	Method Ref: SM 2540 C		Revision: 23RD ED		Date: 2015	
1955	RESI	DUE-FILTERABLE (TDS)	03/23/2021	11/30/2022	Ν	NMI	NE
Method Code: 200	051223	Method Ref: SM 2540 D-2015		Revision:		Date: 2015	
1960	RESI	DUE-NONFILTERABLE (TSS)	08/22/2021	11/30/2022	Ν	NMI	NE
Method Code: 200	053127	Method Ref: SM 2550 B		Revision: 22ND ED		Date: 2010	
2030	TEM	PERATURE, DEG. C	12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 200	080426	Method Ref: SM 4500-CL E-2011		Revision:		Date: 2011	
1940	TOT	AL RESIDUAL CHLORINE	12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 200	085216	Method Ref: SM 4500-CL C-2011		Revision:		Date: 2011	
1575	CHL	ORIDE	12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 200	097023	Method Ref: SM 4500-CN G		Revision: 23RD ED		Date: 2016	
1510	AME	ENABLE CYANIDE	03/23/2021	11/30/2022	Ν	NMI	NE

This analyte list supersedes all previously issued analyte lists. Method accreditation does not imply acceptance for NHDES compliance testing. Laboratory is required to use EPA-approved methods required by regulation. Continuing accreditation status is dependent on successful ongoing participation in the program. Customers may verify the laboratory's current accreditation status by calling (603) 271-2998 or by visiting the NH ELAP website (https://www.des.nh.gov/water/drinking-water/new-hampshire-environmental-laboratory-accreditation-program).

Page 5 of 8

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST ANALYTE LIST NUMBER: 223821-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES 4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

Method Code:	20105220	Method Ref: SM 4500-H+ B-2011		Revision:		Date: 2011	
1900	PH		12/01/2019	11/30/2022	N	NMI	NE
Method Code:	20135039	Method Ref: SM 5210 B-2016		Revision:		Date: 2016	
1530	BIOC	CHEMICAL OXYGEN DEMAND (BOD)	03/23/2021	11/30/2022	N	NMI	NE
1555	CARE	BONACEOUS BOD (CBOD)	03/23/2021	11/30/2022	N	NMI	NE
Method Code:	20137637	Method Ref: SM 5310 B-2014		Revision: 23RD EI)	Date: 2014	
2040	TOTA	AL ORGANIC CARBON (TOC)	03/23/2021	11/30/2022	N	NMI	NE
Method Code:	20138630	Method Ref: SM 5310 C-2014		Revision: 23RD El)	Date: 2014	
2040	TOTA	AL ORGANIC CARBON (TOC)	03/23/2021	11/30/2022	N	NMI	NE
Method Code:	: 60007161	Method Ref: LACHAT 10-204-00-1-X		Revision:		Date: 2005	
1645	TOTA	AL CYANIDE	03/23/2021	11/30/2022	N	NMI	NE
Method Code:	60031450	Method Ref: OIA 1677-09		Revision:		Date: 2010	
1523	AVAI	ILABLE CYANIDE	03/23/2021	11/30/2022	N	NMI	NE
Method Code:	Method Code: 10133207 Method Ref: SW-846 3005A			Revision: UPDATE	ΕI	Date: 1992	
1438	PREC	CONCENTRATION UNDER ACID	12/01/2019	11/30/2022	N	PRE	NE
Method Code:	: 10133605	Method Ref: SW-846 3010A		Revision: UPDATE	ΕI	Date: 1992	
1420	HOT	PLATE ACID DIGESTION (HNO3 + HCL)	12/01/2019	11/30/2022	N	PRE	NE
Method Code:	: 10134006	Method Ref: SW-846 3015A		Revision: UPDATE	EIV	Date: 2007	
1430	MICE	ROWAVE-ASSISTED ACID DIGESTION OF TCLP EXTRA	CTS 03/23/2021	11/30/2022	N	PRE	NH
Method Code:	: 10214207	Method Ref: EPA 1000.0 - FATHEAD MINNO DAILY	DW, 7-DAY CHRONIC,	Revision:		Date: 2002	
3470	IC25	(ON) GROWTH	12/01/2019	11/30/2022	N	TOX	NE
3475	NOE	C (GROWTH)	12/01/2019	11/30/2022	N	TOX	NE
3465	NOE	C (SURVIVAL)	12/01/2019	11/30/2022	N	TOX	NE
Method Code: 10253040 Method Ref: EPA 100		Method Ref: EPA 1002.0 - CERIODAPHNIA I CHRONIC,	DUBIA, 3-BROOD	Revision:		Date: 2002	
3480	IC25	REPRODUCTION	12/01/2019	11/30/2022	N	TOX	NE
3465		C (SURVIVAL)	12/01/2019	11/30/2022	N	TOX	NE
3485		C REPRODUCTION	12/01/2019	11/30/2022	N	TOX	NE
Method Code:		Method Ref: EPA 200.7	12/01/2013	Revision: 4.4	14	Date: 1994	
1000		MINUM	12/01/2019	11/30/2022	SC	MET	NE
1005		MONY	12/01/2019	11/30/2022	SC	MET	NE
1010	ARSE		12/01/2019	11/30/2022	SC	MET	NE
1015	BARI		12/01/2019	11/30/2022	SC	MET	NE
1020	BERYLLIUM		12/01/2019	11/30/2022	SC	MET	NE
1030	CADI	MIUM	12/01/2019	11/30/2022	SC	MET	NE
1035	CALC	CIUM	12/01/2019	11/30/2022	SC	MET	NE
1040	CHR	OMIUM	12/01/2019	11/30/2022	SC	MET	NE
1050	COB	ALT	12/01/2019	11/30/2022	SC	MET	NE

This analyte list supersedes all previously issued analyte lists. Method accreditation does not imply acceptance for NHDES compliance testing. Laboratory is required to use EPA-approved methods required by regulation. Continuing accreditation status is dependent on successful ongoing participation in the program. Customers may verify the laboratory's current accreditation status by calling (603) 271-2998 or by visiting the NH ELAP website (https://www.des.nh.gov/water/drinking-water/new-hampshire-environmental-laboratory-accreditation-program).

Page 6 of 8

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST ANALYTE LIST NUMBER: 223821-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES 4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

1055	COPPER	12/01/2019	11/30/2022	SC	MET	NE
1070	IRON	12/01/2019	11/30/2022	SC	MET	NE
1075	LEAD	12/01/2019	11/30/2022	SC	MET	NE
1085	MAGNESIUM	12/01/2019	11/30/2022	SC	MET	NE
1090	MANGANESE	12/01/2019	11/30/2022	SC	MET	NE
1100	MOLYBDENUM	12/01/2019	11/30/2022	SC	MET	NE
1105	NICKEL	12/01/2019	11/30/2022	SC	MET	NE
1125	POTASSIUM	12/01/2019	11/30/2022	SC	MET	NE
1140	SELENIUM	12/01/2019	11/30/2022	SC	MET	NE
1150	SILVER	12/01/2019	11/30/2022	SC	MET	NE
1155	SODIUM	12/01/2019	11/30/2022	SC	MET	NE
1160	STRONTIUM	12/01/2019	11/30/2022	SC	MET	NE
1165	THALLIUM	12/01/2019	11/30/2022	SC	MET	NE
1175	TIN	12/01/2019	11/30/2022	SC	MET	NE
1180	TITANIUM	12/01/2019	11/30/2022	SC	MET	NE
1185	VANADIUM	12/01/2019	11/30/2022	SC	MET	NE
1190	ZINC	12/01/2019	11/30/2022	SC	MET	NE
Method Code: 10036609 Method Ref: EPA 245.1			Revision: 3		Date: 1994	
1095	MERCURY	12/01/2019	11/30/2022	SC	MET	NE
Method Code:	10063602 Method Ref: EPA 350.1		Revision: 2		Date: 1993	
1515	AMMONIA AS N	12/01/2019	11/30/2022	SC	NMI	NE
Method Code:			Revision: 2		Date: 1993	
1795	TOTAL KJELDAHL NITROGEN (TKN)	12/01/2019	11/30/2022	SC	NMI	NE
Method Code:			Revision: 2		Date: 1993	
1910	TOTAL PHOSPHORUS	12/01/2019	11/30/2022	SC	NMI	NE
Method Code: 10198455 Method Ref: SW-846 9045D			Revision: UPDATE	IIIB	Date: 2004	
1900	PH	03/23/2021	11/30/2022	SC	NMI	NE
Method Code: 20005270 Method Ref: SM 2540 G-2011			Revision:		Date: 2011	
1947	RESIDUE - FIXED	12/01/2019	11/30/2022	SC	NMI	NE
1950	RESIDUE-TOTAL (TS)	12/01/2019	11/30/2022	SC	NMI	NE
1970	RESIDUE-VOLATILE	12/01/2019	11/30/2022	SC	NMI	NE
Method Code: 10136002 Method Ref: SW-846 3051A			Revision: UPDATE	IV	Date: 2007	
1426	MICROWAVE DIGESTION OF SOLIDS	03/23/2021	11/30/2022	SC	PRE	NE

This analyte list supersedes all previously issued analyte lists. Method accreditation does not imply acceptance for NHDES compliance testing. Laboratory is required to use EPA-approved methods required by regulation. Continuing accreditation status is dependent on successful ongoing participation in the program. Customers may verify the laboratory's current accreditation status by calling (603) 271-2998 or by visiting the NH ELAP website (https://www.des.nh.gov/water/drinking-water/new-hampshire-environmental-laboratory-accreditation-program).

Page 7 of 8

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST ANALYTE LIST NUMBER: 223821-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES 4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

NORTHEAST 11/30/2021

Bill Hal

NH ELAP Program Manager Issue Date: 11/30/2021

Matrix Legend: AE=Air; BT=Tissue; D=Drinking Water; N=Non-Potable Water; SC=Solid and Chemical Materials

Category Legend: MIC=Microbiology; MET=Metals; NMI=Non-Metal Inorganics; PRE=Preparation; VOC=Volatile Organic Compounds; SBN=SVOC-BNA; SHE=SVOC-Herbicides; SNO=SVOC-NOS; SPC=SVOC-PCB; SPE=SVOC-Pesticides; RAD=Radiochemistry; WET=Wet, PFC=Perfluorinated compound

Accreditation Legend: NE=NELAP; NH=NH State Certification; CE=State Certification; IN=Interim (NELAP); WI=Withdrawn; AP=Applied; RE=Revoked; SU=Suspended

Page 8 of 8

Appendix F. Acknowledgement Letters

April 11, 2022

Mr. Seth Hothem Supervisor of Environmental Assessment Northeast Ohio Regional Sewer District 4747 East 49th Street Cuyahoga Heights, Ohio 44125

Dear Mr. Hothem:

This letter is to acknowledge that I am responsible for assisting the Northeast Ohio Regional Sewer District's Water Quality and Industrial Surveillance Division in conducting chemical water quality assessments for the 2022 Chagrin River Environmental Monitoring, Cuyahoga River Environmental Monitoring, Euclid/Dugway Storage Tunnels Post-Construction Monitoring, Euclid Creek Microbial Source Tracking Study, Euclid Creek Sediment Sampling, Woodland Central Green Infrastructure Water Quality Improvement Study, Stream Restoration Projects Pre- & Post-Construction Monitoring and the Lake Erie Nutrient Study.

It is understood that an Ohio Environmental Protection Agency Level 3 Qualified Data Collector Certification for Chemical Water Quality Assessment is required to perform these tasks and that I am responsible for maintaining my Level 3 QDC Certification during the term of these Study Plans.

In addition, I have not been convicted nor pleaded guilty to a Violation of Section 2911.21 of the Revised Code (criminal trespass) or a substantially similar municipal ordinance within the previous five years.

Sincerely,

Kelsey Amidon

Stormwater Inspector III

Northeast Ohio Regional Sewer District

4747 East 49th Street

Cuyahoga Heights, Ohio, 44125

Appendix G. Wild Animal Collector's Permit

Division of Wildlife Headquarters

2045 Morse Road, Bldg, G Columbus, Ohio 43229-6693 1-800-WILDLIFE

Chief: Kendra S. Wecker

Effective Date:

03/16/2021

Expiration Date:

03/15/2023

Permit Holder:

SETH HOTHEM 4747 EAST 49TH ST CUYAHOGA HEIGHTS, OH 44125

Scientific Collection

License Number: SC200107

NORTHEAST OHIO REGIONAL SEWER
DISTRICT
4747 EAST 49TH ST
CUYAHOGA HEIGHTS, OH 44125

Others authorized on permit: YES (See below)

The permittee is hereby granted permission to take, possess, and transport at any time and in any manner specimens of wild animals, subject to the conditions and restrictions listed below or any documents accompanying this permit.

The Chief of the Division of Wildlife will not issue permit for Dangerous Wild Animal (DWA) species (ORC 935.01) except native DWA, required for specific projects. The permit issued by the Chief does not relieve the permittee of any responsibility to obtain a permit pursuant to R.C. Chapter 935 except as specified for the animals and purposes permitted herein. The permittee must adhere to all additional requirements under R.C. Chapter 935.

THIS PERMIT IS RESTRICTED AS FOLLOWS:

- 1. Permittee may collect fish, macroinvertebrates, and amphibians for survey and inventory purposes. All non-target species are to be released at site of capture.
- 2. Fish may be collected for fish tissue study. Common species of fish may also be collected and displayed for educational purposes. Fish must be displayed at NEORSD or the Greater Cleveland Aquarium or other public educational facility. They may not be maintained at a private residence. Sport fish >6 in. must be immediately released.
- 3. Qualified surveyors may survey freshwater mussels for reconnaissance purposes on Group 1 and 3 streams. Relic mussel shells may be collected and taken to NEORSD. No more than two specimens per species.
- 4. Biosecurity measures must be taken at all times to minimize the potential transmission of diseases. Please follow the recommendations of the Northeast PARC (included) for all work with reptiles and amphibians.
- 5. Permittee must consult with Wildlife's Stream Conservation and Environmental Assessment Unit (SCEA) prior to conducting any wild animal work associated with compliance requirements of the Clean Water Act (CWA) Section 401 and/or 404. Contact the unit at (614) 265-6346 (John Navarro).
- 6. Twenty-four (24) hours prior to collection, contact must be made with the local wildlife officer to advise location and duration of sampling.
- 7. All voucher specimens are to be deposited at NEORSD or the Cleveland Museum of Biological Diversity.
- 8. Permittee must contact the Division of Wildlife if previously undocumented aquatic invasive species are discovered. Contact John Navarro at (614) 265-6346 or john.navarro@dnr.ohio.gov with information. If grass carp, silver carp, big head carp or black carp are captured, please retain and contact Eric Weimer at (419) 625-8062 or at eric.weimer@dnr.ohio.gov.
- 9. Collection is prohibited in the Killbuck, Big Darby, Little Darby, including the tributaries to, the east branch of the Chagrin River above I-90, Fish Creek (Williams County) and Division of Wildlife property without explicit written permission from the Division of Wildlife. Sampling is further restricted in streams that may have federally listed mussels. See Appendix A of the Ohio Mussel Survey Protocol (April 2020 @

Division of Wildlife Headquarters

2045 Morse Road, Bldg, G Columbus, Ohio 43229-6693 1-800-WILDLIFE

Chief: Kendra S. Wecker

Scientific Collection

License Number: SC200107

Effective Date:

03/16/2021

Expiration Date:

03/15/2023

Permit Holder:

SETH HOTHEM 4747 EAST 49TH ST CUYAHOGA HEIGHTS, OH 44125 NORTHEAST OHIO REGIONAL SEWER
DISTRICT
4747 EAST 49TH ST
CUYAHOGA HEIGHTS, OH 44125

COUNTY CLIVATION

https://ohiodnr.gov/static/documents/wildlife/permits/dow-protocol-ohio-mussel-survey.pdf) for locations of federally listed mussels.

10. An annual electronic report must be submitted in the Wildlife Diversity Database Excel spreadsheet format to the Permit Coordinator at wildlife.permits@dnr.ohio.gov by March 15th of each year. The file may be downloaded from wildohio.gov or obtained from the Permit Coordinator.

Locations of Collecting:

Statewide with noted exceptions

Equipment and method used in collection:

Any scientifically accepted method, Electrofishing, seines, trap net, Hand collection, net, divers

Name and number of each species to be collected:

Fish (As requested), Macroinvertebrates (As requested), Mussel relics/reconaissance (as required/group 1 and 3 streams), Salamanders (As requested)

NO ENDANGERED SPECIES OR AQUATIC NUISANCE SPECIES MAY BE TAKEN WITHOUT WRITTEN PERMISSION FROM THE CHIEF

Division of Wildlife Headquarters

2045 Morse Road, Bldg, G Columbus, Ohio 43229-6693 1-800-WILDLIFE

Chief: Kendra S. Wecker

Effective Date:

03/16/2021

Expiration Date:

03/15/2023

Permit Holder:

Scientific Collection

License Number: SC200107

SETH HOTHEM 4747 EAST 49TH ST CUYAHOGA HEIGHTS, OH 44125

NORTHEAST OHIO REGIONAL SEWER
DISTRICT
4747 EAST 49TH ST
CUYAHOGA HEIGHTS, OH 44125

SUB-PERMITTEES

Permit #SC200107 authorizes the following persons to conduct the activities listed on the permit, within the conditions and restrictions set forth. Each person must carry and exhibit upon request, a copy of the permit and this attachment when conducting any of the listed activities. The person named on the permit assumes full responsibility for the actions of the persons on this list and for completing and submitting all required reports.

- Boesinger, Hannah
- Brauer, Jonathan
- Fitzgibbons, Kevin
- Knittle, Jillian
- · Maichle, Ron
- Matteson, Mark
- Neelon, Daniel
- · Phillips, Denise
- · Rhoades, John
- · Schiel, Joseph
- Soehnlen, Eric
- Telep, Justin

Appendix H. References

References

- Chlorophyll a Sampling and Field Filtering Standard Operating Procedure (SOP-EA001-00)
- EPA New England- Region 1. (2005). Standard operating procedure for calibration and field measurement procedures for the YSI Model 6-Series Sondes and Data Logger (Including: temperature, pH, specific conductance, turbidity, dissolved oxygen, chlorophyll, rhodamine WT, ORP, and barometric pressure) (7th Revision). North Chelmsford, MA: The Office of Environmental Measurement and Evaluation, Ecosystem Assessment- Ecology Monitoring Team.
- Ohio Environmental Protection Agency. (1987a). *Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters* (Updated January 1988; September 1989; November 2006; August 2008; May 2015). Columbus, OH: Division of Water Quality Monitoring and Assessment.
- Ohio Environmental Protection Agency. (1987b). Biological criteria for the protection of aquatic life: Volume III. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities (Updated September 1989; March 2001; November 2006; August 2008; September 2015; June 2015). Columbus, OH: Division of Water Quality Monitoring and Assessment.
- Ohio Environmental Protection Agency. (1997). Draft. Biological Criteria for the Protection of Aquatic Life: Volume IV: Fish and Macroinvertebrate Indicies for Ohio's Lake Erie Nearshore Waters, Harbors, and Lacustuaries. Columbus, OH: Division of Surface Water, Ecological Assessment Unit.
- Ohio Environmental Protection Agency. (2003). *Total Maximum Daily Load for the Lower Cuyahoga River*. Columbus, OH: Division of Surface Water.
- Ohio Environmental Protection Agency. (2006). *Methods for assessing habitat in flowing waters:* using the Qualitative Habitat Evaluation Index (QHEI). (Ohio EPA Technical Bulletin EAS/2006-06-1). Columbus, OH: Division of Surface Water; Division of Ecological Assessment Section.
- Ohio Environmental Protection Agency. (2010). *Methods of Assessing Habitat in Lake Erie Shoreline Waters Using the Qualitative Habitat Evaluation Index (QHEI) Approach (Version 2.1)*. Columbus, OH: Division of Surface Water.
- Ohio Environmental Protection Agency. (2015). *Proposed Stream Nutrient Assessment Procedure*. Columbus, OH: Division of Surface Water, Ohio EPA Nutrients Technical Advisory Group.
- Ohio Environmental Protection Agency. (2019). Surface Water Field Sampling Manual for water quality parameters and flow. Columbus, Ohio: Division of Surface Water.
- Ohio Environmental Protection Agency. (2020). *Ohio 2020 Integrated Water Quality Monitoring and Assessment Report.* Columbus, Ohio: Division of Surface Water.

- Ohio Environmental Protection Agency. (2021a). Surface Water Field Sampling Manual for water quality parameters and flow. Columbus, Ohio: Division of Surface Water.
- Ohio Environmental Protection Agency. (2021b). *State of Ohio Water Quality Standards Ohio Administrative Code Chapter 3745-1* (Revision: April 21, 2021). Columbus, OH: Division of Surface Water; Standards and Technical Support Section.