

Level 3 Project Study Plan

2024 East Side Tributaries Environmental Monitoring

Table of Contents

List of	Acronyms	2
(1)	Objective	3
(2)	Non-Point/Point Sources	5
(6)	Sampling Locations	5

List of Acronyms

ALU	Aquatic Life Use
AOC	Area of Concern
BUI	Beneficial Use Impairment
CSO	Combined Sewer Overflow
ECT	Euclid Creek Tunnel
DST	Dugway Storage Tunnel
EMSC	Environmental Maintenance Service Center
EPA	Environmental Protection Agency
GPS	Global Positioning System
HUC	Hydrologic Unit Code
IBI	Index of Biotic Integrity
ICI	Invertebrate Community Index
MIwb	Modified Index of Well-Being
NEORSD	Northeast Ohio Regional Sewer District
NPDES	National Pollution Discharge Elimination System
QDC	Qualified Data Collectors
QHEI	Qualitative Habitat Evaluation Index
RM	River Mile
TMDL	Total Maximum Daily Load
USGS	United States Geological Survey
WQS	Water Quality Standards
WQIS	Water Quality & Industrial Surveillance
WWTP	Wastewater Treatment Plant

2024 East Side Tributaries Environmental Monitoring February 29, 2024

(1) Objectives

The objective of this study is to conduct water quality monitoring on Euclid Creek and Nine-Mile Creek as part of the Northeast Ohio Regional Sewer District (NEORSD) general watershed monitoring program. This study will assess fish and macroinvertebrate community biology, fish habitat, and water chemistry at three sites in the Euclid Creek watershed and two sites in the Nine-Mile Creek watershed.

Water quality improvements in both streams have been long-term targets of the NEORSD "Project Clean Lake" infrastructure projects. The specific infrastructure projects that have anticipated impacts on streams in this study include the Euclid Creek Tunnel (ECT), the Dugway Storage Tunnel (DST), and the East 140th Street Relief and Consolidation Sewer, among other associated relief sewer and regulator upgrades.

The four mainstem sampling locations on Euclid Creek and Nine-Mile Creek are required to be monitored as part of the Ohio EPA National Pollution Discharge Elimination System (NPDES) permit # 3PA0002*JD. This study will track potential water quality improvements due to NEORSD combined sewer overflow (CSO) control measures and the completion of the ECT and the DST. RM 1.00 of the Euclid Creek East Branch Tributary at River Mile (RM) 1.55 is being evaluated to document baseline conditions prior to a potential stream restoration project. Tentative plans may include the removal and/or retrofitting of an in-line stormwater retention pond.

The ECT and DST were completed in 2016 and 2020, respectively, with a total CSO storage capacity of 105 million gallons. During heavy rain events, flows that would normally enter the receiving waterbody through CSO discharges are now re-directed into the ECT or DST to store combined sewage until flows recede at the Easterly Wastewater Treatment Plant (WWTP). This combined sewage is then pumped to the Easterly WWTP via NEORSD interceptor sewers for full treatment before discharging into Lake Erie. Three NEORSD CSOs tributary to Euclid Creek and two CSOs tributary to Nine-Mile Creek are now controlled by the completion of the ECT and DST, which will reduce the number and volume of discharges from these outfalls. The results of this study will be compared to water chemistry and biological data collected prior to ECT and DST completion to evaluate how a reduction of CSO volumes may impact the water quality and biological communities in the receiving waters.

In addition, the NEORSD partnered with the Chagrin River Watershed Partners and provided \$435,000 in matching funds, as well as in-kind services for a \$274,273 Ohio EPA section 319 (nonpoint source program) grant funded project on Nine-Mile Creek. The upstream watershed is highly urbanized and causing severe bank erosion due to the altered flow regime. This project, completed on July 1, 2023, used a natural channel design and bioengineering methods to stabilize the streambanks and improve floodplain connectivity, while replacing one stormwater outfall. In total, 2,200 linear feet of stream bank and 3.2 acres of riparian enhancement were completed. The Nine-Mile Creek RM 0.40 sampling location is located within the restored stream reach and will

2024 East Side Tributaries Environmental Monitoring February 29, 2024

assess direct benefits of the project. More information on this project is available at <u>https://crwp.org/projects/nine-mile-creek/</u>.

Biological assessments on Nine-Mile Creek RM 0.40 will also document the effects of multiple biosolids releases at the Quasar Bioenergy facility in 2023. Biosolids released from Quasar entered Nine-Mile Creek and lowered dissolved oxygen concentrations below the chemical Water Quality Standards (WQS) Aquatic Life Use (ALU) criteria. At least one incident resulted in a fish kill documented by the Ohio Department of Natural Resources. The 2024 water quality assessment on Nine-Mile Creek will assess the effects of the biosolids release on the aquatic life, approximately one year after the incident occurred.

Sampling will be conducted by the NEORSD's Environmental Assessment group in the Water Quality and Industrial Surveillance (WQIS) Division. Samples will be collected by NEORSD Level 3 Qualified Data Collectors (QDC) certified by the Ohio Environmental Protection Agency (EPA) in Fish Community Biology, Benthic Macroinvertebrate Biology, Chemical Water Quality, and Stream Habitat Assessment. Sampling will occur from June 15 through September 30, 2024 (through October 15 for fish sampling assessments), as required in the Ohio EPA Biological Criteria for the Protection of Aquatic Life Volume III (1987b)¹.

Fish and macroinvertebrate community health will be evaluated using Ohio EPA's Index of Biotic Integrity (IBI), Modified Index of Well-Being (MIwb), and Invertebrate Community Index (ICI). An examination of the biological communities will be used in conjunction with water quality data, the NEORSD Macroinvertebrate Field Sheet, and Qualitative Habitat Evaluation Index (QHEI) results to identify impacts to biological communities. Water chemistry sampling will be collected per methods outlined by the Ohio EPA *Surface Water Field Sampling Manual for water quality parameters and flows* (Ohio EPA 2023a). Both water chemistry and biological data will be compared to the Ohio EPA Water Quality Standards to determine attainment of applicable uses (Ohio EPA 2023b). All stream locations in this study are also part of the larger Cuyahoga Area of Concern (AOC) and data may be compared to beneficial use impairment (BUI) removal criteria.

The NEORSD has a Yellow Springs Instruments EXO2 water quality sonde station at Euclid Creek RM 0.65 that records water quality data every 15 minutes. The water quality sonde data will evaluate diel measurements of dissolved oxygen, pH, temperature, and conductivity and may supplement other water quality data.

¹ See Appendix H for a list of references.

(2) Non-Point/Point Sources

Table 1. Potential Sources of Pollution			
Point Sources	Nonpoint Sources		
Combined Sewer Overflows	Agricultural runoff		
Storm Sewer Outfalls	Golf courses		
Home Septic Systems	Highway runoff		
Other NPDES permitted facilities	Sedimentation		
	Spills		
	Urban stormwater runoff		

A map has been provided below (Figure 1) to show the wastewater collection system that may be influencing the water quality at each sample location. These sources, along with the ones listed in the table above, may be impacting the health of the fish, benthic macroinvertebrate communities, and water chemistry in the Cuyahoga River watershed.

(6) Sampling Locations

The following electrofishing and macroinvertebrate sampling locations will be surveyed during the 2024 field season and are summarized in Table 2 below. Benthic macroinvertebrate and water chemistry collection sites are located near the midpoint of each electrofishing zone, indicated by river mile, unless otherwise noted. GPS coordinates are recorded at the downstream end of each sampling zone.

2024 East Side Tributaries Environmental Monitoring February 29, 2024

Figure 1. Map of 2024 East Side Tributaries Environmental Monitoring Sites.

2024 East Side Tributaries Environmental Monitoring February 29, 2024

	Table 2. 2024 East Side Tributaries Water Quality Monitoring Locations						
Description	Station ID	River Mile	Latitude	Longitude	Drain. Area (mi ²)	HUC-12	Purpose
Euclid Creek East Bra	anch Tribu	tary at l	River Mile 1	.55 (19-041-	-002)		
Upstream of Mayfair Lake	200145	1.00	41.5563	-81.7116	0.88	041100030503 Euclid Creek	Evaluate water chemistry, fish, habitat, and macroinvertebrates prior to stream restoration project.
Euclid Creek (19-04)	1-000)						
Upstream of St. Clair Ave.*	504250	1.65	41.5738	-81.5470	21.80	041100030503	Evaluate water chemistry, fish, habitat,
Downstream of Lakeshore Blvd.*	F01A47	0.55	41.5833	-81.5470	23.00	Euclid Creek	and macroinvertebrates.
Nine-Mile Creek (19	-040-000))					
Upstream of Belvoir*	301435	3.34	41.5457	-81.5531	0.70	041100030504	Evaluate water chemistry, fish, habitat, and macroinvertebrates (qual only).
Upstream of Lakeshore Blvd.*	301432	0.40	41.5573	-81.5991	11.80	Doan Brook- Frontal Lake Erie	Evaluate water chemistry, fish, habitat, and macroinvertebrates after stream restoration completion and the Quasar Biosolids release.
*Sampling locations are required by Ohio EPA Permit 3PA0002*JD							

Table of Contents

List of	Acronyms	2			
(3)	Parameters Covered	3			
(4)	Field Collection and Data Assessment Techniques	4			
(5)	Stream Flow Measurement	5			
(7)	Schedule	5			
(8)	QA/QC	7			
(9)	Work Products	Э			
(10)	Qualified Data Collectors	Э			
(11)	Contract laboratory contact information1	1			
(12)	Copy of ODNR Division of Wildlife collector's permit	2			
(13)	Digital Catalog Statement	2			
(14)	Voucher Specimen Statement	2			
(15)	Sample Location Statement12	2			
(16)	Additional L3 Data Collector Statement	3			
(17)	Trespassing Statement	3			
Appen	dix A. Field Forms14	4			
Appen	dix C. Meter Specifications	9			
Appen	dix D. Chlorophyll a Field Form	1			
Appen	Appendix E. Laboratory Certifications				
Appendix F. Acknowledgment Letters					
Appendix G. Wild Animal Collector's Permit					
Appen	dix H. References	3			
Appen	Appendix I. Laboratory Quality Manual and Standard Operating Procedures				

List of Acronyms

DELTs	Deformities, Eroded Fins, Lesions & Tumors
EPA	Environmental Protection Agency
GPS	Global Positioning System
HD	Hester-Dendy
HUC	Hydrologic Unit Code
IBI	Index of Biotic Integrity
ICI	Invertebrate Community Index
LIBI	Lacustuary Index of Biotic Integrity
LICI	Lacustuary Invertebrate Community Index
L-QHEI	Lacustuary Qualitative Habitat Evaluation Index
MIwb	Modified Index of Well-Being
NEORSD	Northeast Ohio Regional Sewer District
ODNR	Ohio Department of Natural Resources
PVC	Polyvinyl Chloride
PVDF	Polyvinylidene Fluoride
QDC	Qualified Data Collector
QHEI	Qualitative Habitat Evaluation Index
RM	River Mile
RPD	Relative Percent Difference
SOP	Standard Operating Procedure
USGS	United States Geological Survey
WQIS	Water Quality & Industrial Surveillance

(3) Parameters Covered

Fish specimens will be identified to species level, weighed, counted and examined for the presence of external anomalies including DELTs (deformities, eroded fins, lesions and tumors). An Ohio EPA Fish Data Sheet (Appendix A) will be completed during each assessment. Quantitative fish sampling is expected to be conducted at all locations.

Macroinvertebrate community assemblages will be collected from each location. An external Level 3 Qualified Data Collector for Benthic Macroinvertebrate Biology Identification will identify and enumerate the specimens collected from each site¹. All specimens will be identified to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b)². The NEORSD Macroinvertebrate Field Sheet (Appendix A) will be completed at each site during sample retrieval or when qualitative sampling is conducted.

Stream habitat will be measured by scoring components of the QHEI at all locations, including the substrate, instream cover, channel morphology, riparian zone, bank erosion, pool/glide and riffle/run quality and gradient. The Lacustuary QHEI (L-QHEI) will be performed at sites that are affected by the water level of Lake Erie. Examples of the Ohio EPA field sheets for the QHEI and the L-QHEI can be found in Appendix A.

Water chemistry samples will be collected at each electrofishing/macroinvertebrate sampling site included in the study. Water chemistry samples will be analyzed by NEORSD's Analytical Services Division. Appendix B lists the parameters to be tested along with the detection limits and practical quantitation limits. Field measurements for dissolved oxygen, pH, temperature, conductivity and turbidity will also be performed. A Surface Water Condition Sampling Field Data Form will be completed at each site during each sampling event (Appendix A).

Benthic and water column chlorophyll *a* samples may be collected from stream locations. Chemical and physical water quality parameters to be measured in conjunction with the chlorophyll *a* samples include total phosphorus, dissolved reactive phosphorus, nitrate+nitrite, ammonia, alkalinity, turbidity and suspended solids. In the Cuyahoga River, YSI EXO2 data sondes may be installed around the time that this sampling is conducted to more frequently monitor dissolved oxygen, temperature, conductivity, specific conductance and pH.

¹ The contractor responsible for doing this work as not been identified yet. Once this contract is awarded, their contact information will be submitted.

²See Appendix H for a list of all references.

- (4) Field Collection and Data Assessment Techniques
 - Field collections for fish will be conducted at all stream locations unless noted in the sample location table for each study. Sampling will be conducted using longline, tote barge, backpack, or boat electrofishing techniques and will consist of shocking all habitat types within a sampling zone. Headwater and wading sites, which are 0.15 and 0.20 kilometers in length, respectively, will be surveyed by moving from downstream to upstream. Boat sites, which are 0.50 kilometers in length, will be surveyed by moving from upstream to downstream. The stunned fish will be collected and placed into a live well for later identification. The longline, tote barge, backpack, and boat electrofishing zones will be assessed one to three times during the field season (June 15 October 15).

Fish will be identified to the species level, weighed, counted, and examined for the presence of external anomalies including DELTs. Fish easily identified (commonly collected from year to year) will be returned to the site from which they are collected. Fish species that are difficult to identify will be brought back to the laboratory for verification by NEORSD Level 3 Fish Qualified Data Collectors (QDC). If necessary, vouchers will be sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Voucher specimens will be collected as described in section (14). Endangered species and those too large for preservation will not be collected as voucher specimens but will instead be photographed. Photographed vouchers will include features that permit definitive identification of the particular species.

Fish will be preserved in 10 percent formalin in the field, soaked in tap water for 24 to 48 hours after 5 to 7 days, then transferred to solutions of 30 and 50 percent ethanol for 5 to 7 days each and, finally, to 70 percent ethanol for long-term storage. Specimens larger than six inches will be slit along the right side and then soaked in formalin for approximately 10 to 14 days before being transferred to water and solutions of 30, 50 and 70 percent ethanol. Label information will include location (description and coordinates), date, time, collectors' names and sample identification code for each specimen collected.

Macroinvertebrate sampling will be conducted using quantitative and qualitative sampling techniques. Quantitative sampling will be done using a modified Hester-Dendy multi-plate artificial substrate sampler (HD) that is colonized for a six-week period. Multiple HD samplers may be installed at one or all sampling locations in case samplers are lost due to vandalism, burial, etc. or for the purposes of providing a replicate sample. Qualitative sampling will be conducted using a D-frame dip net when HD samplers are retrieved. The NEORSD Macroinvertebrate Field Sheet will be completed during each HD retrieval.

Macroinvertebrate voucher specimens for both quantitative and qualitative sampling will be collected as described in section (14). Macroinvertebrate community assemblages collected will be shipped to an external Level 3 Qualified Data Collector for Benthic Macroinvertebrate Biology Identification for identification and enumeration. The Level 3 QDC will identify specimens to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b).

A detailed description of the sampling and analysis methods utilized in the fish community and macroinvertebrate surveys, including calculations of the IBI, MIwb, and ICI, can be found in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life*, Volumes II (1987a) and III (1987b). Methods for assessing fish and macroinvertebrate communities in lacustuary zones can be found in Ohio EPA's draft *Biological Criteria for the Protection of Aquatic Life*, Volume IV (2024).

The QHEI, as described in Ohio EPA's Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI) (2006) will be used to assess aquatic habitat conditions at each sample location. The L-QHEI will be used where appropriate and will follow Ohio EPA's Methods of Assessing Habitat in Lake Erie Shoreline Waters Using the Qualitative Habitat Evaluation Index (QHEI) Approach (Version 2.1) (2010).

Water chemistry sampling may occur across a variety of flow conditions. Techniques used for water chemistry sampling and chemical analyses will follow the Surface Water Field Sampling Manual for water quality parameters and flows (Ohio EPA, 2023a). Chemical water quality samples from each site will be collected with at least one 4-liter disposable polyethylene cubitainers with disposable polypropylene lids and two 473-mL plastic bottles. Water samples collected for analysis of dissolved reactive phosphorus will be filtered using a $0.45-\mu m$ PVDF syringe filter and will be collected in a 125-mL plastic bottle. Bacteriological samples will be collected in a sterile plastic bottle preserved with sodium thiosulfate. All water quality samples will be collected as grab samples. Duplicates and replicates will together comprise not less than 5% of total samples collected for each study plan. Field blanks will also comprise not less than 5% of the total samples collected for each study plan, for a total frequency of quality control samples of not less than 10% of the total samples collected. With the exception of bacteriological duplicate/replicate samples, the acceptable percent RPD will be based on the ratio of the sample concentration and detection limit (Ohio EPA, 2023b): Acceptable % RPD = $[(0.9465X^{-0.344})*100] + 5$, where X = sample/detection limit ratio. For bacteriological samples, duplicate/replicate samples more than 5x apart from one another (%RPD > 133.3%) will be rejected in accordance with the Ohio EPA approved method for data validation of bacteriological samples outlined in Section F of the Ohio 2022 Integrated Water Quality Monitoring and Assessment Report (Ohio EPA, 2022). Those RPDs that were higher than acceptable may indicate potential problems with sample collection and, as a result, the data will not be used for comparison to the water quality standards. Acid preservation of the samples, as specified in the NEORSD laboratory's standard operating procedure for each parameter, will occur in the field. Appendix B lists the analytical method, method detection limit and practical quantitation limit for each parameter analyzed. Field analyses include the use of either a YSI EXO1 sonde, YSI EXO2 sonde or YSI 600XL sonde to measure dissolved oxygen (DO), water temperature, conductivity and pH; and when necessary, a Hanna HI 98129 meter to

measure pH and a Hach HQ30d meter with LDO101 probe to measure DO. Field turbidity will be measured using a Hach 2100Q Turbidimeter. Specifications for these meters have been included in Appendix C.

Benthic and water column chlorophyll *a* samples may be collected if time and resources allow. Sampling methods will follow those detailed in the NEORSD *Chlorophyll a Sampling and Field Filtering Standard Operating Procedure* (SOP-EA001-02). A Chlorophyll *a* Sampling Field Sheet will be completed for each site where benthic chlorophyll *a* samples are collected (Appendix D). Water chemistry grab samples will be collected at the same time using the methods discussed previously and will be analyzed for nutrients, turbidity, alkalinity and suspended solids. Additionally, in conjunction with chlorophyll *a* sampling events, approximately 24-hours prior to each event, YSI EXO2 data sondes may be deployed at sampling locations. If installed, each data sonde will record, at fifteen-minute intervals, dissolved oxygen concentration, pH, temperature, and conductivity from the time the data sonde is deployed until the time it is retrieved. These data sondes will be placed in the stream by inserting each one into a 4.5-inch PVC pipe with holes drilled into the sides of the lower third of the pipe to allow water to pass through it. The data sondes will remain at the sampling location for approximately 24-hours or longer following collection of the chlorophyll *a* samples.

Where possible, data assessment will include an analysis of temporal and spatial trends in the collected data. Species assemblages and individual metrics will be analyzed. Graphs that show current and historic QHEI, L-QHEI, IBI, LIBI, MIwb, ICI, and LICI scores and how these scores compare to attainment status of biocriteria will be prepared. Water chemistry data collected will be compared to Ohio water quality standards to determine whether any excursions from the applicable water quality criteria have occurred. It will also be used to determine any relationships among individual parameters and chlorophyll *a* concentrations. Comparisons between water quality and biological community health will only be made if at least three water quality samples have been collected from that site.

(5) Stream Flow Measurement

Stream flow will be recorded for all locations during each electrofishing pass utilizing data from the United States Geological Survey (USGS) gauge station nearest the stream location, if applicable.

Stream flow will be measured with a HACH FH950 Flow Meter or Ott MF Pro Meter, which measure flow in feet per second, when HD samplers are installed and retrieved. The specifications for the flow meters can be found in Appendix C.

(7) Schedule

One to three electrofishing surveys will be conducted at each site between June 15 and October 15, 2024. Surveys will be conducted at least three weeks apart. Specific dates

have not been scheduled. River flow and weather conditions will be assessed weekly to determine when each electrofishing pass will be conducted.

Artificial substrate samplers will be installed at stream locations between June 15 and August 19, 2024, and retrieved six weeks later. Qualitative macroinvertebrate sampling will be conducted one time at all sites. Specific dates have not been scheduled. River flow and weather conditions will be assessed weekly to determine when the HD sampler installations and retrievals and qualitative sampling will be conducted.

QHEI, and, if necessary, L-QHEI habitat evaluations will be conducted one time between June 15 and October 15, 2024. QHEI evaluations will be conducted around the same time as one of the electrofishing surveys.

Water chemistry samples will be collected a minimum of three times from stream locations between June 15 and October 15, 2024.

Benthic and water column chlorophyll *a* samples may be collected at least one time from stream locations between June 15 and October 15, 2024. These samples will be collected under low-flow conditions.

(8) QA/QC

Quality assurance and quality control of sampling and analysis methods for habitat, fish, and macroinvertebrate evaluations will follow Ohio EPA's Biological Criteria for the Protection of Aquatic Life, Volumes II (1987a) and III (1987b), Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI) (2006), draft Biological Criteria for the Protection of Aquatic Life: Volume IV: Fish and Macroinvertebrate Indicies for Ohio's Lake Erie Nearshore Waters, Harbors, and Lacustuaries (2024) and Methods of Assessing Habitat in Lake Erie Shoreline Waters Using the Qualitative Habitat Evaluation Index (QHEI) Approach (Version 2.1) (2010)

Electrofishing equipment will be used according to the guidelines listed in the operation and maintenance manual provided by Smith-Root, Inc. Malfunctioning equipment will not be used to collect data. Proper steps will be taken to correct any problems as soon as possible, whether by repairing in the field, at the NEORSD Environmental & Maintenance Services Center, or by contacting the supplier or an appropriate service company.

Fish species difficult to identify will be brought back to the laboratory for verification by Level 3 Fish QDC's, and if necessary, sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Voucher specimens will be collected as described in section (14). Endangered species and those too large for preservation will not be collected as voucher specimens but will instead be photographed. Photographed vouchers will include features that permit definitive identification of the particular species.

All macroinvertebrate community assemblages from stream locations, except for any replicate samples, will be collected and shipped to an external Level 3 Qualified Data Collector for Benthic Macroinvertebrate Biology Identification for identification and enumeration. All specimens will be identified to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b). All macroinvertebrate specimens will be returned to NEORSD. At least two voucher specimens of each species, when available, will be separated into individual vials and kept as described in section (14). The remaining specimens for each site will be returned in a single container labeled with the site number and collection method and date. All specimens and accompanying chain-of-custody documentation will be retained by NEORSD and stored at the Environmental & Maintenance Services Center for a period not less than ten years.

Water samples obtained for chemical analyses will be collected, preserved (see Section 4), labeled and then placed on ice inside the field truck. The field truck will remain locked at all times when not occupied/visible. Sampling activities, including sample time and condition of surface water sampled, will be entered in a field logbook and on the Surface Water Condition Sampling Field Data Form. The samples will then be delivered immediately to the NEORSD Analytical Services cooler, after which the door to the cooler will be locked, and the samples will be transferred to the custody of Analytical Services. The NEORSD Analytical Services are provided in Appendix I. Updates, revisions and any information on document control will be sent to Ohio EPA as needed.

For benthic and water column chlorophyll *a* sampling, three filtrations will be performed for each sample. A field filtration blank will be submitted for every 20 samples.

Calibration of YSI 600XL, EXO1, and EXO2 data sondes will be done according to the YSI Environmental Operations Manual. The conductivity will be calibrated first using a 1.413 mS/cm standard. Second, the pH will be calibrated using two different buffers (7 and 10 s.u.). The DO will be calibrated last with an acceptable error of 0.2 mg/L.

If EXO2 sondes are installed in the streams, once they are removed, the accuracy of the data that has been collected will be checked by comparing readings taken by the sondes to known standards. If the measurements taken at this time meet quality control goals, all of the data collected since the last calibration will be considered accurate. The acceptable differences for pH and conductivity will be ± 0.3 with pH 7 buffer and $\pm 10\%$ of the conductivity standard, respectively (EPA New England- Region 1, 2005). The acceptable difference for DO will be ± 0.2 mg/L. If the measurements do not meet quality control goals, best professional judgment will be used to decide if any of the data collected during that period may still be accurate. For example, the data collected from the four locations may be plotted on the same graph, and if it appears that the data points are following similar

trends, they may be considered accurate. If any data that do not meet quality control goals are used, a rationale for their inclusion will be provided when the data are submitted.

(9) Work Products

Within one year of completion of the project, fish data (species, numbers, weights, pollution tolerances, the incidence of DELT anomalies, IBI or LIBI, MIwb scores), macroinvertebrate data (types and numbers of macroinvertebrates collected and ICI or LICI scores), habitat data (QHEI or L-QHEI raw data and scores) and water chemistry results will be submitted to the Ohio EPA or an Ohio EPA approved data warehouse. Additionally, reports summarizing, interpreting, graphically presenting and discussing the IBI (LIBI, where applicable), MIwb, ICI (LICI, where applicable) and QHEI (L-QHEI, where applicable) scores, chlorophyll *a* results, and any excursions from water quality standards may be prepared for internal use.

(10) Qualified Data Collectors

The following Level 3 Qualified Data Collectors (QDC) will be involved with this study:

Name	Address	Email Address	Phone Number	QDC Specialty(s)
Seth Hothem ¹	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	hothems@neorsd.org	216-641- 6000	QDC - 00010 CWQA/FCB/BMB
Brittany Dalton	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	daltonb@neorsd.org	216-641- 6000	QDC - 01483 CWQA
Jeff Harrison	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	harrisonj@neorsd.org	216-641- 6000	QDC - 01485 CWQA
Ron Maichle	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	maichler@neorsd.org	216-641- 6000	QDC - 00145 CWQA/BMB
Mark Matteson	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	mattesonm@neorsd.org	216-641- 6000	QDC – 01020 CWQA/FCB/BMB
Christina Miller	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	millerchristina@neorsd.org	216-641- 6000	QDC - 01573 CWQA
Denise Phillips	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	phillipsd@neorsd.org	216-641- 6000	QDC – 01203 CWQA
John Rhoades	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	rhoadesj@neorsd.org	216-641- 6000	QDC - 00008 CWQA/FCB/BMB
Shawn Robinson	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	robinsons@neorsd.org	216-641- 6000	QDC - 01486 CWQA

Name	Address	Email Address	Phone Number	QDC Specialty(s)	
Eric Soehnlen	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	soehnlene@neorsd.org	216-641- 6000	QDC – 01030 CWQA/BMB	
Justin Telep	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	telepj@neorsd.org	216-641- 6000	QDC – 01304 CWQA/FCB/BMB	
Francisco Rivera ²	3900 Euclid Avenue, Cleveland, OH 44115	riveraf@neorsd.org	216-881- 6600	QDC - 00262 CWQA	
Kelsey Hickox ²	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	hickoxk@neorsd.org	216-641- 6000	QDC – 01091 CWQA	
¹ NEORSD Lead Project Manager					

² See acknowledgment letter for conducting water chemistry sampling (Appendix F)

The following is a list of persons not qualified as Level 3 QDCs who may be involved in the project. Prior to the start of sampling, the project managers will explain to each individual the proper methods for sampling. Sampling will only be completed under the direct observation of a QDC. The lead project manager will be responsible for reviewing all reports and data analysis prepared by qualified personnel prior to completion.

Name	Address	Email Address	Phone Number	
Chris Abraham	4747 East 49 th Street	abrahamc@neorsd.org	216-641-6000	
	Cuyahoga Hts., Ohio 44125		0000	
Laurel Cone	4747 East 49 th Street	copel@peorsd.org	216-641-6000	
	Cuyahoga Hts., Ohio 44125	coper@neorsd.org	210 041 0000	
Laura Forduson	4747 East 49th Street	forgueon@noored.org	216-641-6000	
Laura reiguson	Cuyahoga Hts., Ohio 44125	leigusoni@neoisu.oig	210-041-0000	
Dec Crent	4747 East 49 th Street	avents@neered.eva	216 641 6000	
Rae Grafit	Cuyahoga Hts., Ohio 44125	grantr@neorsd.org	216-641-6000	
Margarat Haddkiss Lilly	4747 East 49 th Street	haddkies lillum@naarsd.ard	216-641-6000	
Margaret Hougkiss-Lilly	Cuyahoga Hts., Ohio 44125	nougkiss-infym@neorsd.org		
Matthew Johnson	4747 East 49 th Street	ishness matthew@nessed.arg	216-641-6000	
Matthew Johnson	Cuyahoga Hts., Ohio 44125	johnsonmattnew@neorsd.org		
Dyon Darrich	4747 East 49 th Street	narrich anoard ard	216 641 6000	
Ryall Pattisti	Cuyahoga Hts., Ohio 44125	parinsin@neorsd.org	210-041-0000	
Ensure Devith	4747 East 49 th Street			
Emma Routh	Cuyahoga Hts., Ohio 44125	routne@neorsd.org	216-641-6000	
Frank Caluaday	4747 East 49 th Street		216 641 6000	
Frank Schuschu	Cuyahoga Hts., Ohio 44125	schuschut@neorsa.org	210-041-0000	
	4747 East 49 th Street		216 641 6000	
vvoitram von Kiparski	Cuyahoga Hts., Ohio 44125	vonkiparskiw@heorsd.org	216-641-6000	

Name	Address	Email Address	Phone Number	
Environmental	4747 E. 49th Street,			
Compliance Inspector	Cuyahoga Heights, OH@neorsd.org		216-641-6000	
(TBD)	44125			
Tulor Codi	4747 East 49th Street	codit @ poored ord	216-641-6000	
i yier sagi	Cuyahoga Hts., Ohio 44125	sagit@neorsd.org		
Paraprofessional Intern	4747 East 49th Street		216-641-6000	
(TBD)	Cuyahoga Hts., Ohio 44125			
Paraprofessional Intern	4747 East 49th Street		216 641 6000	
(TBD)	Cuyahoga Hts., Ohio 44125	@neorsd.org	216-641-6000	
Paraprofessional Intern	4747 East 49th Street		216 641 6000	
(TBD)	Cuyahoga Hts., Ohio 44125	@neorsd.org	210-041-0000	

(11) Contract laboratory contact information

All bacteriological and/or chemical sample analysis will be completed by NEORSD's Analytical Services Division. Evidence of NEORSD's Analytical Services current accreditation and method dates can be found in Appendix E. The contact information for NEORSD's Analytical Service Division is:

NEORSD Analytical Services Cheryl Soltis-Muth, Manager 4747 E. 49th Street Cuyahoga Heights, Ohio 44056 soltis-muthc@neorsd.org 216-641-6000

Any fish that is not positively identified in the field, or at NEORSD, will be sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Fish will be identified to the species level.

Mr. Marc Kibbey, Associate Curator of Fish 1315 Kinnear Road, Columbus, Ohio 43212 cavender.1@osu.edu / kibbey.3@osu.edu 614-292-7873

Identification of macroinvertebrates for stream locations will be completed by an external Level 3 Qualified Data Collector for Benthic Macroinvertebrate Biology Identification³. Benthic macroinvertebrates will be identified to the lowest practical level as recommended by Ohio EPA (1987b). Contact information for this contractor will be submitted once the contract is awarded.

³ A letter of acknowledgement of the macroinvertebrate identification responsibilities will be added as an addendum to this study plan, in Appendix F, upon finalization of the macroinvertebrate identification contract.

- (12) Copy of ODNR Division of Wildlife collector's permit To be submitted once received from ODNR
- (13) Digital Catalog Statement

A digital photo catalog of all sampling locations will be maintained for 10 years and will include photos of the specific sampling location(s), the riparian zone adjacent to the sampling location(s) and the general land use in the immediate vicinity of the sampling location(s).

Print/Signature: Seth Hothem/ Soth Hother Date: 3/1/24

(14) Voucher Specimen Statement

NEORSD will maintain a benthic macroinvertebrate and fish voucher collection which includes two specimens, or appropriate photo vouchers, of each species or taxa collected during the course of biological sampling from any stream within the NEORSD's service area. When benthic macroinvertebrates from multiple surface waters are collected within the same year and identified by the same QDC, one voucher collection will be created to represent the specimens collected from those streams. When fish specimens from multiple surface waters are collected within the same year, one voucher collection will be created to represent the specimens collected from those streams. A separate collection for each sampling event will not be maintained.

NEORSD will provide specimens or photo vouchers to the Director upon request. This collection will be stored at the NEORSD laboratory in the Environmental and Maintenance Services Center.

Print/Signature:	Seth Hothem/	Sear your	Date: 3	1/24
------------------	--------------	-----------	---------	------

(15) Sample Location Statement

I attest that I will make available any and all sampling location information, including but not limited to; the name of the water body sampled, sampling location latitude and longitude, sampling location river mile where possible, general location information, the U.S. geological survey HUC 8 number and name, and the purpose for data collection at each sampling location.

			. / /
Print/Signature:	Seth Hothem/ Seth The	Date: 3	3/1/24

(16) Additional L3 Data Collector Statement

The Lead Project Manager for all stream locations is approved for all project data types.

Print/Signature:	Seth Hothem/	Ston Horas	Date: 3/1/24	
				_

(17) Trespassing Statement

I have not been convicted or pleaded guilty to a Violation of section 2911.21 of the Revised Code (criminal trespass) or a substantially similar municipal ordinance within the previous five years.

Print/Signature:	Seth Hothem/ Seth Aforth	Date: 3/1/24
Print/Signature:	Brittany Dalton/ MMA	Date: 3124
Print/Signature:	_Jeff Harrison/	Date: 3/1/24
Print/Signature:	Ron Maichle/ Takad	Date: 03-01-24
Print/Signature:	Mark Matteson/	Date: 3/1/24
Print/Signature:	Christina Miller/ Cliftung Liller	Date: 3/1/24
Print/Signature:	Denise Phillips/ Den Queliaz	Date: 3/1/24
Print/Signature:	John W. Rhoades	Date: 03/01/24
Print/Signature:	Shawn Robinson MM	Date: 3/1/24
Print/Signature:	Eric Soehnlen/ Ch	Date: 3/01/24
Print/Signature:	Justin Telep/	Date: 3/1/24

Appendix A. Field Forms

ChicERA	FISH DAT SHEET			c ese only	(requires lat/long & cor	unty) Mix	Zone		Pa	ge	of	
Station ID		Riv	er Code		RM	Date			_Ti	me_		
Stream					——— Locatio	n						
Comments —												
Lat	L	ong		County		ALP		– Ti	me F	lishe	d	
Crew		Nette	er	Oth	ers		Sam	pler	Тур	e		
Distance	Flow	Te	mp. C	Secchi	Source	Project _						
Fins Code	Number Weighed C	Total Counted	Total Weight		Weights	ounts	Defor	DE mities Multi	LT A , Eros	NON ions, 1 ELTs o	IALI Lesion	ES 1s, Tumo fish
							D	E	L	Т	М	*
							_					
V 102	<u> </u>						D	E	L	Т	М	*
V 102	ĸ							-	-			
							D	E	L	Т		*
V 10	7						_					
102							D	Е	L	Т	М	*
V 102	K						D	E	L	Т	М	*
V 102	K											
							D	E	L	Т	M	*
V 10-	7						_					
102							D	Е	L	Т	М	*
V 102	K I						D	E	L	Т	M	*
V 102	K											
							D	E	L	Т	М	*
V												
v 103	κ.											

* A-anchor worm; B-black spot; C-leeches; F-fungus; N-blind; P-parasites; S-emaciated, W-swirled scales Y-popeye; Z-other

EPA 4508 11/4/2005

	Fins Code	Number Weighed	Total Counted	Total Weight	WeightsCoun	its		Ра	ige -		_ of -	
10				weight			D	Е	L	Т	М	*
	N I											
	V 10x						D	E	L	Т	М	*
11									L	1	IVI	
	V 10x											
12					 		D	Е	L	Т	М	*
	V 10x											
13	IUA						D	E	L	Т	М	*
13			1									
	V 10x						D	E	L	Т	М	*
14								L	L	1	101	
	V 10x											
15							D	Е	L	Т	М	*
15												
	V 10											
	v IUX						D	Е	L	Т	М	*
16												
	V 10x											
17							D	E	L	Т	М	*
	V 10x											
10	104						D	Е	L	Т	М	*
18			1									
	V 10x	<u> </u>					D	E	L	Т	М	*
19							-	-	-	-		
	V 10x											
20							D	Е	L	Т	М	*
20			1									
	V											
	v 10x						D	E	L	Т	М	*
21							-	-	-	-		
	V 10x	1										

NEORSD Macroinvertebrate Field Sheet

Location: Project: River Code:	Stream:					River Mile	:		Year:	
River Code:Station ID:	Location:				Project:					
Drainage Area (mi ²):Latitude ("N)/Longitude ("W): Site Type: WWH EWH CWH Lacustuary Other:Eco-Region: Hester-Dendy Deployment Information Install Date:Crew (QDC Circled):Pictures Obtained: Yes No Replicate/Reinstall Date:Crew (QDC Circled):Pictures Obtained: Yes No Replicate/Reinstall Date:Crew (QDC Circled):Pictures Obtained: Yes No Sampling Method: Hester-Dendy Dipnet Ekman (6x6) Other: Sampling Date:Crew (QDC Circled):Pictures Obtained: Yes No Sampling Date:Crew (QDC Circled): OEPA Comment Field Codes:Netree No Disturbed Yes No Debris: Yes No Situ/Solids: None Slight Moderate Heavy Sample ID: Munibure of IDB Blocks Obtained:Comments: Disturbed: Yes No Situ/Solids: None Slight Moderate Heavy Sample ID: Number of IDB Blocks Obtained:Comments: Number of IDB Blocks Obtained:Comments: Disturbed: Yes No SiturSolids: None Slight Moderate Heavy Sample ID: Disturbed: Yes No Siture:End Time:Sample ID: Habitats Sampled (min):X Number of Crew:= Total (min): Sample Non-Detect Slow Moderate Fest Canony (over HD): Open 75 % 50 % 25 % Closed Flow Conditions: Dry Intermittent Interstitial Low Normal Above Normal Flood Carrent Floctp: Non-Detect Slow Moderate Extensive Water Clore: None Slight Moderate Extensive Water Clore: None Green Brown Grey Other:	River Code:					Station ID:			_	_
Site Type: WWH EWH CWH Lacustuary Other:	Drainage Area (m	ni ²):	Latit	ude (°N)/Lo	ngitude (°W):	·				
Hester-Dendy Deployment Information Install Date:	Site Type: WV	VH EW	H CWH	Lacustu	ary Other:			Eco-Reg	gion:	
Instain Date:Crew (QDC Circled): Pictures Obtained: Yes No Replicate/Reinstall Date:Crew (QDC Circled): Current at HD (fps):Depth (em):Reason: Sampling/Retrieval Information Sampling/Retrieval Information Sampling Method: Hester-Dendy Dipnet Ekman (6x6) Other: GEPA Comment Field Codes:OC / °F HD Condition- Current (fps):Depth (cm):Comments: Disturbed: Yes No Debris: Yes No Sith/Solids: None Slight Moderate Heavy Sample ID: Number of HD Blocks Obtained:Comments:				Hester-	Dendy Deploy	yment Info	rmatio	n		
Current at HD (tps):Depth (cm):Crew (QDC Circled): Current (fps):Depth (cm):Reason: Sampling Method: Hester-Dendy Dipnet Ekman (6x6) Other: Sampling Date:Crew (QDC Circled): OEPA Comment Field Codes:Crew (QDC Circled): OEPA Comment Field Codes:Comments: Mumber of HD Blocks Obtained:Comments: Disturbed: Yes No Debris: Yes No Mumber of HD Blocks Obtained:Comments: Number of HD Blocks Obtained:Comments: Number of HD Blocks Obtained:Comments: Disturbed: Yes No Debris: Yes No Sith/Solids: None Slight Moderate Heavy Sample ID: Number of HD Blocks Obtained:Comments: Disturbed: Yes No Debris: Yes No Sith/Solids: None Slight Moderate Heavy Sample ID: Disturbed: Yes No Debris: Yes No Sith/Solids: None Slight Moderate Heavy Sample ID: Disturbed: Yes No Debris: Yes No Sith/Solids: None Slight Moderate Heavy Sample ID: Disturbed: Yes No Debris: Yes No Sith/Solids: None Slight Moderate Heavy Sample ID: Disturbed: Yes No Debris: Yes No Sith/Solids: None Slight Moderate Heavy Sample ID: Disturbed: Yes No Debris: Yes Sample ID: Disturbed: Yes No Debris: Yes No Sith/Solids: None Slight Moderate Fast Channelized Channelized Channelized Channelized Recovered Impounded Bank Erosion: None Slight Moderate Extensive Water Clority: Non-Detect Slow Moderate Extensive Water Clority: Clear Muddy Tea Milky Other: Potential Pollutions:	Install Date:			D		QDC Circled	1):	D' (<u>.</u>
Replicate Keinstän Date:	Current at HD (Ip	ns):		Dep	oth (cm):	2DC C' 1	1)	Pictures	Obtained: Yes	No
Current (tps):	Replicate/Reinsta	II Date:		()	Crew (C	2DC Circleo	1):			
Sampling Method: Hester-Dendy Dipnet Ekman (6x66) Other:	Current (fps):		Depth	n (cm):		Reaso	n:			
Sampling Method: Hester-Dendy Dipnet Ekman (6x6) Other: Sampling Date:		_		Sam	pling/Retriev	val Informa	tion			
Sampling Date: Crew (QDC Circled): OEPA Comment Field Codes: Water Temp: C'.^*F HD Condition- Current (fps): Depth (cm): Comments: Minimum Number of HD Blocks Obtained:	Sampling Method	1:	Hester-De	ndy	Dipnet	Ekman (6x	.6)	Other:		
OEPA Comment Field Codes:	Sampling Date:				Crew (QDC	Circled):				
HD Condition- Current (fps): Depth (cm): Comments: Minimum Disturbed: Disturbed: Yes No Outrent 0.3 fps. Disturbed: Yes No 0.7-1.5 fps. Disturbed: Yes No Replicate: Current (fps): Depth (cm): Comments: Number of HD Blocks Obtained: Depth (cm): Comments: Number of HD Blocks Obtained: Disturbed: Yes No Disturbed: Yes No Debris: Yes No Silt/Solids: None Slight Moderate Heavy Sample ID:	OEPA Comment	Field Co	des:					Water Temp	:	°C / °F
Minimum Valuable of HD Blocks Obtained: 0.7-1.5 fps. Number of HD Blocks Obtained: Disturbed: Yes No Debris: Yes No Replicate: Current (fps):	HD Condition-	Current	(fps):		Depth (cm):			Comments:		
Disturbed: Yes No Debris: Yes No 0.7-1.5 fps. Silt/Solids: None Slight Moderate Heavy Sample ID:	Minimum Current 0.3 fps	Number	of HD Bloc	cks Obtaine	d:					
0.7-1.5 fps. Silt/Solids: None Slight Moderate Heavy Sample ID: Replicate: Current (fps): Depth (cm): Comments: Number of HD Blocks Obtained:	Ideal Current	Disturbe	ed: Yes	No	Debris:	Yes	No			
Replicate: Current (fps):	0.7-1.5 fps.	Silt/Soli	ds: None	Slight	Moderat	te Heavy	T	Sample ID:		
Number of HD Blocks Obtained: Disturbed: Yes No Disturbed: Yes No Silt/Solids: None Slight Moderate Heavy Sample ID:	Replicate:	Current	(fps):		Depth (cm):			<i>Comments:</i>		
Disturbed: Yes No Debris: Yes No Silt/Solids: None Slight Moderate Heavy Sample ID:		Number	of HD Bloc	cks Obtaine	d:					
Silt/Solids: None Slight Moderate Heavy Sample ID: Dipnet- Time Sampled (min): X Number of Crew: = Total (min): Start Time: End Time: Sample ID:		Disturbe	ed: Yes	No	Debris:	Yes	No			
Dipnet- Time Sampled (min): X Number of Crew: = Total (min): Start Time: End Time: Sample ID: Habitats Sampled: Pool Riffle Run Margin Backwater River Sampling Conditions Weather: Clear Partly Cloudy Cloudy Overcast Light Rain Other: Canopy (over HD): Open 75 % 50 % 25 % Closed Flow Condition: Dry Intermittent Interstitial Low Normal Above Normal Flood Current Velocity: Non-Detect Slow Moderate Fast Channel Morphology: Natural Channelized Channelized (Recovered) Impounded Bank Erosion: None Slight Moderate Extensive Water Clority: Clear Muddy Tea Milky Other:		Silt/Soli	ds: None	Slight	Modera	te Heavy	r	Sample ID:		
Start Time: End Time: Sample ID: Habitats Sampled: Pool Riffle Run Margin Backwater River Sampling Conditions River Sampling Conditions Weather: Clear Partly Cloudy Cloudy Overcast Light Rain Other: Canopy (over HD): Open 75 % 50 % 25 % Closed Flow Condition: Dry Intermittent Interstitial Low Normal Above Normal Flood Current Velocity: Non-Detect Slow Moderate Fast Fast Channel Morphology: Natural Channelized Channelized (Recovered) Impounded Bank Erosion: None Slight Moderate Extensive Water Clarity: Clear Muddy Tea Milky Other:	Dipnet-	Time Sa	mpled (mir	n):	X Nu	mber of Cre	w:	= To	tal (min):	
Habitats Sampled: Pool Riffle Run Margin Backwater River Sampling Conditions Weather: Clear Partly Cloudy Cloudy Overcast Light Rain Other: Canopy (over HD): Open 75 % 50 % 25 % Closed Flow Condition: Dry Intermittent Interstitial Low Normal Above Normal Flood Current Velocity: Non-Detect Slow Moderate Fast Channel Morphology: Natural Channelized Channelized (Recovered) Impounded Bank Erosion: None Slight Moderate Extensive Water Clarity: Clear Muddy Tea Milky Other: Water Color: None Green Brown Grey Other:		Start Tir	me:		End Time:			Sample ID:		
River Sampling Conditions Weather: Clear Partly Cloudy Cloudy Overcast Light Rain Other: Canopy (over HD): Open 75 % 50 % 25 % Closed Flow Condition: Dry Intermittent Interstitial Low Normal Above Normal Flood Current Velocity: Non-Detect Slow Moderate Fast Channel Morphology: Natural Channelized Channelized (Recovered) Impounded Bank Erosion: None Slight Moderate Extensive Water Clarity: Clear Muddy Tea Milky Other:		Habitats	s Sampled:	Pool	Riffle Ru	n Margi	n	Backwater		
Weather: Clear Partly Cloudy Cloudy Overcast Light Rain Other: Canopy (over HD): Open 75 % 50 % 25 % Closed Flow Condition: Dry Intermittent Interstitial Low Normal Above Normal Flow Current Velocity: Non-Detect Slow Moderate Fast Fast Channel Morphology: Natural Channelized Channelized (Recovered) Impounded Bank Erosion: None Slight Moderate Extensive Water Clarity: Clear Muddy Tea Milky Other:				R	iver Samplin	g Condition	15			
Canopy (over HD): Open 75 % 50 % 25 % Closed Flow Condition: Dry Intermittent Interstitial Low Normal Above Normal Flood Current Velocity: Non-Detect Slow Moderate Fast Channel Morphology: Natural Channelized Channelized (Recovered) Impounded Bank Erosion: None Slight Moderate Extensive Water Clarity: Clear Muddy Tea Milky Other: Water Color: None Green Brown Grey Other: Potential Pollution:	Weather:		Clear P	artly Cloud	y Cloudy	Overc	ast	Light Rain	Other:	
Flow Condition: Dry Intermittent Interstitial Low Normal Above Normal Flood Current Velocity: Non-Detect Slow Moderate Fast Fast Fast Channel Morphology: Natural Channelized Channelized (Recovered) Impounded Bank Erosion: None Slight Moderate Extensive Water Clarity: Clear Muddy Tea Milky Other: Water Color: None Green Brown Grey Other: Potential Pollution Sources:	Canopy (over HL)):	Open	75 %	50)%	25 %	Closed		
Current Velocity: Non-Detect Slow Moderate Fast Channel Morphology: Natural Channelized Channelized (Recovered) Impounded Bank Erosion: None Slight Moderate Extensive Water Clarity: Clear Muddy Tea Milky Other: Water Color: None Green Brown Grey Other: Potential Pollution Sources:	Flow Condition:		Dry 1	Intermittent	Interst	itial L	ow	Normal	Above Normal	Flood
Channel Morphology: Natural Channelized Channelized (Recovered) Impounded Bank Erosion: None Slight Moderate Extensive Water Clarity: Clear Muddy Tea Milky Other: Water Color: None Green Brown Grey Other: Evidence of Pollution:	Current Velocity:		Non-Detec	et Slow	Moder	rate F	ast			
Bank Erosion: None Slight Moderate Extensive Water Clarity: Clear Muddy Tea Milky Other:	Channel Morpho	logy:	Natural	Channel	ized Cha	annelized (R	ecover	red) Imp	pounded	
Water Clarity: Clear Muddy Tea Milky Other: Water Color: None Green Brown Grey Other: Evidence of Pollution:	Bank Erosion:		None	Slight	Мо	derate E	xtensiv	ve		
Water Color: None Green Brown Grey Other: Evidence of Pollution:	Water Clarity:		Clear	Muddy	Tea	ı N	lilky	Other:		
Evidence of Pollution: Potential Pollution Sources: Comment Section:	Water Color:		None	Green	Bro	own G	rey	Other:		
Potential Pollution Sources: Comment Section:	Evidence of Pollu	tion:								
Comment Section:	Potential Pollution	on Source	es:							
Samples Analyzed By: QDC #: Date:	Comment Sectio	n:								
Samples Analyzed By: QDC #: Date:										
Samples Analyzed By: QDC #: Date:										
Samples Analyzed By: QDC #: Date:										
Samples Analyzed By: QDC #: Date:		15								
Company/Entity:	Samples Analyze	ed By: w/Entity:			QL	DC #:		Date:		

NEORSD Macroinvertebrate Field Sheet

.1.								Phy	sical (Characteristic	es					
¥		Substrate C	harac	eteris	tics				Pred	ominant Lan	d Use (Left,	Right or Bot	th)			
ц			e		1		1		Fores	st	Urban		Op	en Pastu	re	
10 i			Riff	nits	Rur	nits	000	nits	Shru	b	Residential	Park	Clo	osed Past	ure	
to			~	5	· ·	5		Ъ	Old I	Field	Mining/Con	nstruction	We	etland		
dn	Bedr	ock							Row	crop	Industrial		Other			
le is	Boul	der														
[qqc	Cobb	ole/Rubble							Pred	ominant Ripa	arian Vegeta	tion	Rif	fle Habi	itat	
Ŭ	- Grav	el Course							Left	Right	Туре		Embedd	ed: Y	es	No
		Fine									Large Trees	5	Develop	ment:		
	Sand										Small Trees	6			E	xtensive
[e]	Silt										Shrubs				М	oderate
irav	Clay	/Hardpan									Grass/Wee	ls			Sp	parse
e C	Detri	tus									None				A	bsent
oars	Peat										Riparian W	idth	Quailty:			
Ũ	Mucl	k											Go	od F	air	Poor
	Othe	r							Mar	gin Habitat						
	Macr	ophytes							Marg	in Quality:	Good	Fair	e Poo	or		%
	Alga	e							Type.	s Present:						—
wel	Artif	acts							21	Root Mats	τ	Jndercut Ban	ks			
Gra	Com	paction (F.M.S)	-							Tree Roots	5	hallows	Rir	Rap		
ine	Dent	h (Avg)								Woody Debri	s S	oft Clav	Bu	lkhead		
Ц	Widt	h (Avg)	<u> </u>							Macrophytes/	Grass	Other	2.4			
sanc	Ī	ii (115)				1	L				•	ould				
		Overall Co	llooti					B101	ogical	Characterist	lles Habitat Sy	anifin Organ	niama			
Fat	1	$(V \rightarrow 151, A = 1)$	50.10	л 1. С-	100.1	1. D_	. 10 1)		D;AL		nautat S	beenie Orgai	1181118			
ESI. 1	Ami	(v->131; A-1	30-10	1; C-	100-1	1; K-	10-1))	кујие	Dradaminant (Organismi					
,	/	Tradicita, Diyozoa	4 .	TT:	1:					Other Command	Organishi.					—
/	/	Turbellaria, Oligoch	iaeta,	Hiru	dinea					Other Commo	on Organisms	: <u> </u>		T		
	/	Isopoda, Amphipod	a							Density:	High	Mode	rate	Low		
	/	Decapoda, Hydraca	rına							Diversity:	Hıgh	Mode	rate	Low		
		Baetidae														
		Heptageniidae							Run:							
	/	Leptohyphidae, Cae	enidae	;						Predominant (Organism:					
		Other Mayfly					_			Other Commo	on Organisms	:				
	/	Zygoptera, Anisopte	era							Density:	High	Mode	rate	Low		
		Plecoptera								Diversity:	High	Mode	rate	Low		
		Hemiptera														
	/	Megaloptera/Neurop	ptera						Pool							
		Hydropsychidae								Predominant (Organism:					
	/	Philopotamidae/Pol	ycent	ropod	lidae					Other Commo	on Organisms	:				
	/	Hydroptilidae, Lept	ocerio	lae						Density:	High	Mode	rate	Low		
		Other Caddisfly								Diversity:	High	Mode	rate	Low		
		Lepidoptera														
		Elimidae							Marg	gin:						
		Haliplidae							L.	Predominant (Organism:					
		Other Beetles								Other Commo	on Organisms	:				—
		Chironomidae					-			Density:	High	Mode	rate	Low		—
	/	Tipulidae. Simuliida	ae							Diversity:	High	Mode	rate	Low		
<u> </u>		Other Diptera														
 	/	Gastropoda Rivalvi	ia				-		Othe	r Notable Col	lections					
	,	Other							Jine		-					
V= V	Very Al	bundant; A= Abundant	t; C= (Comm	non; R	= Rar	e									_
	<i>j</i> - 1	Field Narrativ	ve Rя	ting:	,		Е		VG	G	MG	F P	VI)		—
							_			-	-	-	. 1			

NEORSD Macroinvertebrate Field Sheet

Field Sketch

tream:	River Mile:	Date:	QDC Initials:

Comment Section (2):

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

ChicEPA	Qualitative Habita and Use Assessi	at Evaluation Inde ment Field Sheet	X QHEI Scol	re:
Stream & Location:				<u> </u>
	Scorers	s Full Name & Affiliation	7. Northeast Ohio Regional	Sewer District
<i>River Code:</i>	_ <u>STORET#;</u>	(NAD 83 - decimal °)	/8	location
BEST TYPES POOL RIFFLI BLDR /SLABS [10] BOULDER [9] COBBLE [8] GRAVEL [7] BEDROCK [5] NUMBER OF BEST TYPES: Comments	OTHER TYPES POOL OTHER POOL OTHER OTHER	Check ORIGIN UIMESTONE [1] UIMESTONE [1] UIMESTONE [1] UIMESTONE [1] UIMESTONE [1] UIMESTONE [0] UIMETLANDS [0] UIMES; ignore RIP/RAP [0] UIMES; ignore UIMESUTURINE [0] UIMESUTURINE [0] UIMESUTURINE [1] UIMESUT	ONE (Or 2 & average) QUA HEAVY SILT MODER FREE [BODED EXTENS MODER MODER	LITY [-2] SATE [-1] SIVE [-2] SIVE [-2] AL [0] AL [0] Maximum 20
2] ///STREAM COVER Indicate pro- quality; 2-M quality; 3-Highest quality in moderate of diameter log that is stable, well develop UNDERCUT BANKS [1] OVERHANGING VEGETATION [SHALLOWS (IN SLOW WATER) ROOTMATS [1] Comments	esence 0 to 3: 0-Absent; 1-Very Moderate amounts, but not of hig greater amounts (e.g., very lar ed rootwad in deep / fast water, POOLS > 70cm [2] [1] ROOTWADS [1] [1] BOULDERS [1]	e small amounts or if more comm ghest quality or in small amount ge boulders in deep or fast wate or deep, well-defined, functiona OXBOWS, BACKWAT AQUATIC MACROPH LOGS OR WOODY DE	AMC ts of highest er, large al pools. ERS [1] YTES [1] BRIS [1] Check ONE (EXTENSIV MODERAT SPARSE 5 BRIS [1]	DUNT Or 2 & average) E >75% [11] E 25-75% [7] -<25% [3] BSENT <5% [1] Cover Maximum 20
3] CHANNEL MORPHOLOGY CI SINUOSITY DEVELOPMEN HIGH [4] EXCELLENT [MODERATE [3] GOOD [5] LOW [2] FAIR [3] NONE [1] POOR [1] Comments FAIR [3]	Anteck ONE in each category (<i>Or</i> IT CHANNELIZATIO [7] NONE [6] [8] RECOVERED [4] [9] RECOVERING [3] [9] RECENT OR NO REC	2 & average) DN STABILITY HIGH [3] MODERATE [2 LOW [1] OVERY [1]	2]	Channel Maximum
4] BANK EROSION AND RIPAN River right looking downstream EROSION NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE [1] Comments	RIAN ZONE Check ONE in e ARIAN WIDTH > 50m [4] E > 50m [4] ERATE 10-50m [3] ROW 5-10m [2] Y NARROW < 5m [1]	ach category for <i>EACH BANK</i> (FLOOD PLAIN QUAL DREST, SWAMP [3] HRUB OR OLD FIELD [2] ESIDENTIAL, PARK, NEW FIEL ENCED PASTURE [1] PEN PASTURE, ROWCROP [0	Or 2 per bank & average) ITY I CONSERVATI O URBAN OR IN D [1] I URBAN OR IN Indicate predominant past 100m riparian.	ON TILLAGE [1] NDUSTRIAL [0] ISTRUCTION [0] Iand use(s) Riparian Maximum 10
5] <i>POOL / GLIDE AND RIFFLE .</i> MAXIMUM DEPTH CH Check ONE (<i>ONLY</i> !) Check	/ RUN QUALITY ANNEL WIDTH ONE (Or 2 & average) DTH > RIFFLE WIDTH [2] DTH = RIFFLE WIDTH [1] DTH < RIFFLE WIDTH [0] U	CURRENT VELOCIT Check ALL that apply TORRENTIAL [-1] SLOW [1 VERY FAST [1] INTERST FAST [1] INTERMI MODERATE [1] EDDIES Indicate for reach - pools and	Y Primary Primary Seconda (circle one and riffles.	Pool / Pool / Pool / Current Maximum 12
Indicate for functional riffle of riffle-obligate species: RIFFLE DEPTH RUN BEST AREAS > 10cm [2] MAXIM BEST AREAS 5-10cm [1] MAXIM BEST AREAS < 5cm [metric=0] Comments	ES; Best areas must be I Check ONE (I DEPTH RIFFLE / UM > 50cm [2] STABLE (e. UM < 50cm [1] MOD. STABLE UNSTABLE	arge enough to support Or 2 & average). RUN SUBSTRATE RIF .g., Cobble, Boulder) [2] BLE (e.g., Large Gravel) [1] E (e.g., Fine Gravel, Sand) [0]	t a population FFLE / RUN EMBEDE NONE [2] LOW [1] MODERATE [0] EXTENSIVE [-1]	0 RIFFLE [metric=0] 0 EDNESS 1 Riffle Run Maximum 8
6] <i>GRADIENT</i> (ft/mi) DRAINAGE AREA (mi ²)	/ERY LOW - LOW [2-4] MODERATE [6-10] HIGH - VERY HIGH [10-6]	%POOL: %RUN:) %GLIDE:)%RIFFLE:	Gradient Maximum 10

A SAMPL	<i>ED REACH</i> ALL that apply	Comment RE: Reach consistency/	s reach typical of steam?, Recreation	n/ Observed - Inferred, Other	/Sampling observations, Concerns, Acco	ess directions, etc.
METHOD BOAT WADE L. LINE OTHER DISTANCE	STAGE 1st -sample pass- 2nd HIGH UP NORMAL LOW DRY					
□ 0.5 Km □ 0.2 Km □ 0.15 Km □ 0.12 Km □ 0THER ••••••••••••••••••••••••••••••••••••	CLARITY 1stsample pass 2nd < 20 cm	BJAESTHETICS NUISANCE ALGAE INVASIVE MACROPHYTES EXCESS TURBIDITY DISCOLORATION FOAM / SCUM OIL SHEEN TRASH / LITTER NUISANCE ODOR	D] MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE	Circle some & COMMENT	E] ISSUES WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPs-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H20 / TILE / H20 TABLE	<i>F] MEASUREMENTS</i> x̄ width x̄ depth max. depth x̄ bankfull width bankfull x̄ depth W/D ratio bankfull max. depth
 > 85%- OPI 55%-<85% 30%-<55% 10%-<30% <10%- CLO 	EN 2nd cm CJ RECRE	SLUDGE DEPOSITS CSOs/SSOs/OUTFALLS CATION AREA DOCL: >100ft ² >3ft	ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE		ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY	floodprone x ² width entrench. ratio <i>Legacy Tree:</i>

Stream Drawing:

Lake / Lacus	tuary (Lentic) (QHEI Field Sł	neet Ohio	Environmental Protection Agency	QHEI Score:	
RIVERCODE	RIVERMILE	WAT	ERBODY	DISTA	ANCE ASSESSED (m)	
DATE						
SCORER	LAT	LONG	COMMEN	IT		
1] SUBSTRATE (Ch	eck ONLY Two Substrate	TYPE BOXES; Estin	nate % or note every	type present);	LAKE: LACUSTUAR	Y:
			Check ONE (or 2 & A)	IN (ERAGE) (CheckONE (or 2 & AVERAGE)	
			- D-LIMESTONE [1]	SLT:	J-SILTHEAVY [2]	Substrate
					SILT MODERATE [-1]	
GRAVEL [7]		T [2]			J-SILT NORMAL [0]	
				╔╢╟╺╺╺╺╺╺╺		Max 20
NOTE: Japara sludga li	pet originator, from point so	172.05		" SLT [
score on natural substr	ates		-HARDPAN [0]	ORIGIN:	J-ORGANIC [1]	
NUMBER OF SUBSTR	ATE TYPES	[2] ŋ	U-SHALE[-1] U-COAL/ORE[-2]		J-NONE[1]	
COMMENTS:						
2] COVER TYPES -OFF-SHORE SAND I -OVERHANGING VEC -SHALLOWS (ON BE -ROOTMATS [1] COMMENTS:	<u>TYPE:</u> BARS [4] -DEEPWAT BETATION [1] -ROOTWAD ACH) [1] -BOULDER -SAND BEA	(Check All That Apply) ER>1 M[1] □-WETLA DS[1] □-SUBME S[1] □-LOGS (CH[1] □-GRAVE	ND POOLS [1] RGED AQUATIC VEG. [DRWOODY DEBRIS [1] L BEACH [1]	AMOUNT: (Ch D-EXTENSIVE D-MODERATE D-SPARSE 5-2 D-NEARLY AB	eck ONLY One or check2 and >75% [9] 25-75% [7] 5% [3] SENT <5% [1]	AVERAGE) Cover
					······································	
SHORE SINUOSITY SHORE SINUOSITY HGH [2] HODERATE [4] HONE [1] HORE to BOTTOM SI SHORE to BOTTOM SI	DEVELOPMENT DEVELOPMENT DEVELOPMENT D-EXCELLENT[6] D-GOOD [5] D-FAIR[3] D-FAIR[3] D-FOOR[1] OPE MORPHOLOGIES D-SLOPE >45 deg. [2] D-SLOPE 90 deg. [0] AND BANK EROSION (0)	MODIFICATION □-NONE [7] □-RECOVERED [5] □-RECOVERING [3] □-RECENTORNO RECOVERY [1] AVERAGE DEPTH ((□-<50 cm [0] □-<50 -<100 cm [1] □->200 -4 00 cm [3] □->200 -4 00 cm [3] Check OVE box PER bank	STABLITY →HIGH [3] →MODERATE [2] →MODERATE [2] →LOW [1] of 5 measures) → 400 - 500 cm [4] → 500 - 900 cm [2] → 900 cm [1] or 2 and AVERAGE	MODIFICATION □-REMENTE □-RAILROAD □-RAILROAD □-RAILROAD □-RAILROAD □-RAILROAD □-TWO SIDE MODIFICATI □-SHP CHAN Shore Rig	NS OF SAMPLED SHORE D[-1] I STEEL BU D[1] I SLANDS[1 TIES [-1] I DIMES [-1] [-1] I BANK SHAL CHANNEL I WOOD PILL IONS [-1] I NEL [-2] Int Looking East or South on I ht Looking Toward Lake in Lake	IKHEADS [2] PING [-1] NGS [1] Shore Line Max 20 Lake
RIPARIAN WIDTH	L R Most Predomin	ORE LINE QUALITY (PA) ant Per Bank)	ST 100 FOOT RIPARIAN	Ū	BANK EROSION	 .
	50 m [3] [2] [3] [4 5 m [1] [4 6 7 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	VETLAND, LAKE [3] ROLD FIELD [2] , ORCHARD [2] ASTURE [1] IAL, PARK, NEW FIELD [CONSERVATI CONSERVATI	ION TILLIAGE [1] IDUSTRIAL [0] RE, ROWCROP [0] STRUCTION [0] AND [0]		Riparian 31 Max 10
COMMENTS	<u> </u>		<u> </u>		······	
5] AQUATIC VEGET (Score all for observed abu	ATION QUALITY: PLAN Indance: ABUNDANT = [3]; CO	T SPECIES OBSERVI MMON = [5]; FEW = [1]; UN	<u>ED</u> (Sum All Scores) ♦COM MON = [0])		NO AQUATIC VEGETATI	ON = 0
-Pond Lilles (NY -Pond Weed (PC	MPHAEA)Se DTAMOGETON)BL	edge (CYPERACEAE) Ilrush (SCIRPUS)	-Wild Celery (V -Waterweed (El	ALLISNERIA) LODEA)	Wild Rice (ZIZANIA)	Vegetation
(Score all for observed abu	ndance: ABUNDANT = [-2]; CC	MMON = [-1]; FEW = [0])				_ (_)]
-Puple Loosest	rifeReed Grass	-Euraslan Milfoli	Cattails	Algae (mats) _	-Algae (planktonic)	Max 30

WATERBODY MEASUREMENTS	AVERA	ge width:	AVERAGE DEPTH:	Maxim	num Depth:	
Second Sampling Pass: Third Sampling Pass:					Subjective Rating (1 – 10) Photos:	Aesthetic Rating (1-10)
Zebra Mussel/Quagga Mussel Co First Sampling Pass:	Gear	>60%	0 □-25->10% □-<10 Water Clarity	0->1% □-1-0% Wave Height		

NEORSD Surface Water Condition Sampling Field Data Form

Stream:	I	Date:	Co	ollectors:	
Gage Station and ID:			Daily Mean	Discharge:	ft ³ /sec
Was this sample taken	during or followin	ng a wet weather	event?	YES / NO	
Water Quality Meters	Used:				
Time (hrs):		River Mile (Site	e):		
<u>Weather:</u> Clear Steady Rain	Partly Cloudy Heavy Snow	Overcast La Melt O	ght Rain/Show	vers Heavy	Rain
Flow: Dry Inte	ermittent Mir	nimal Baseli	ne/Normal	Elevated Flo	ood
HD Status:	OK Oth	er:			
Color: Clear	Muddy	Tea	Milky	Other:	
Odor: Normal	Petroleum	Anaerobic	Sewage	Chemical	Other:
Surface Coating:	None Foa	m Oily	Scum	Other:	
Field Parameters:	Conductivity (µn	nhos/cm):		Sp. Cond. (µmho	s/cm):
	Dissolved Oxyge	n (mg/L):		D.O. (%):
	Tempera	ature (°C):		pH (s.u.):
Turbidity 1 (NTU):	1	Furbidity 2 (NTU):	Average (1	NTU):
General Comments:					
Reporting sig figs: (Cond a	und DO% - 1) (pH,	DO mg/L, and O	Chlor/BGA-PC	- 0.1) (Temp- 0.0)	1)
Time (hrs):		River Mile (Site	e):		
<u>Weather:</u> Clear Steady Rain	Partly Cloudy Heavy Snow	Overcast La Melt O	ght Rain/Show	vers Heavy	Rain
Flow: Dry Inte	ermittent Mir	nimal Baseli	ne/Normal	Elevated Flo	ood
HD Status:	OK Oth	er:			
Color: Clear	Muddy	Tea	Milky	Other:	
Odor: Normal	Petroleum	Anaerobic	Sewage	Chemical	Other:
Surface Coating:	None Foa	m Oily	Scum	Other:	
Field Parameters:	Conductivity (µn	nhos/cm):		Sp. Cond. (µmho	s/cm):
	Dissolved Oxyge	n (mg/L):		D.O. (%):
	Tempera	ature (°C):		pH (s.u.):
Turbidity 1 (NTU):]	Furbidity 2 (NTU):	Average (1	NTU):
General Commen	ts:				

Appendix B. Parameter Information

				2024	2024
Parameter	Additional	Test	Unit	Minimum	Practical
	Name			Detection	Quantitation
Alkalinity	Alkalinity	EPA 310.2	mg/L	16	5.076
Mercury	Hg	EPA 245.1	ug/L	0.015	0.05
Ammonia ¹	NH3	EPA 350.1	mg/L	0.01	0.05
		EPA 353.2	mg/L	0.005	0.02
Nitrite	NO2	ASTM D7781-14	mg/L	TBD	0.04
		EPA 353.2	mg/L	0.02	0.04
Nitrite + Nitrate	NO ₂ + NO ₃	ASTM D7781	mg/L	0.01	0.04
Total Kjeldahl Nitrogen	TKN	EPA 351.2	mg/L	0.276	0.75
Dissolved Reactive Phosphorus	DRP	EPA 365.1	mg/L	0.0122	0.025
Low Level Dissolved Reactive Phosphorus	LLDRP	EPA 365.1	μg/L	3.01	7.5
Total Phosphorus	Total-P	EPA 365.1	mg/L	0.0156	0.03125
Chloride	Chloride by IC	EPA 300.0	mg/L	2.27	5
Sulfate	Sulfate by IC	EPA 300.0	mg/L	1.89	5
Silvor	٨٥	EPA 200.8 ³	μg/L	0.0239	0.25
511761	, <u>'</u> 8	EPA 200.8 ⁴	μg/L	0.0515	0.5
Aluminum	A1	EPA 200.8 ³	μg/L	1.71	10
		EPA 200.8 ⁴	μg/L	19.3	50
Arsonic	Δs	EPA 200.8 ³	μg/L	0.311	1
Aisenic	73	EPA 200.8 ⁴	μg/L	0.099	1
Barium	Ba	EPA 200.8 ³	μg/L	0.102	0.25
Danum	Du	EPA 200.8 ⁴	μg/L	0.0693	0.5
Beryllium	Be	EPA 200.8 ³	μg/L	0.0257	0.25
Berymann	Бе	EPA 200.8 ⁴	μg/L	0.0445	0.5
Calcium	G	EPA 200.8 ³	μg/L	21.5	125
Calcium	Ca	EPA 200.8 ⁴	μg/L	63.5	500
Cadmium	CH	EPA 200.8 ³	μg/L	0.0282	0.25
Cadmium	Ca	EPA 200.8 ⁴	μg/L	0.0531	0.5
Cobalt	Co	EPA 200.8 ³	μg/L	0.009	0.25
Copait		EPA 200.8 ⁴	μg/L	0.0247	0.5
Chromium	Cr	EPA 200.8 ³	μg/L	0.469	1.25
Cinomian	Cr	EPA 200.8 ⁴	μg/L	1.97	5
Copper	CII	EPA 200.8 ³	μg/L	0.177	0.5
Сорреі	Cu	EPA 200.8 ⁴	μg/L	0.113	1.5
Iron	Fo	EPA 200.8 ³	μg/L	3.175	12.5
		EPA 200.8 ⁴	μg/L	42.4	150

Parameter	Additional Name	Test	Unit	2024 Minimum	2024 Practical
				Detection Limit	Quantitation Limit
		EPA 200.8 ³	μg/L	28.75	125
Potassium	К	EPA 200.8 ⁴	μg/L	127	1250
		EPA 200.8 ³	μg/L	4.095	62.5
Magnesium	Mg	EPA 200.8 ⁴	μg/L	3.57	100
		EPA 200.8 ³	μg/L	0.705	2.5
Manganese	Mn	EPA 200.8 ⁴	μg/L	0.147	5
		EPA 200.8 ³	μg/L	0.119	0.25
Molybdenum	Мо	EPA 200.8 ⁴	μg/L	0.0829	0.5
		EPA 200.8 ³	μg/L	27.25	125
Sodium	Na	EPA 200.8 ⁴	μg/L	28.3	250
		EPA 200.8 ³	μg/L	0.0745	1
NICKEI	NI	EPA 200.8 ⁴	μg/L	0.0942	0.5
		EPA 200.8 ³	μg/L	0.139	0.5
Lead	РБ	EPA 200.8 ⁴	μg/L	0.0332	0.5
	Sb	EPA 200.8 ³	μg/L	0.109	2.5
Antimony		EPA 200.8 ⁴	μg/L	0.0523	0.5
	6	EPA 200.8 ³	μg/L	0.307	1
Selenium	Se	EPA 200.8 ⁴	μg/L	0.141	2
	<u> </u>	EPA 200.8 ³	μg/L	5	20
LIN	Sn	EPA 200.8 ⁴	μg/L	0.898	2
	C.,	EPA 200.8 ³	μg/L	0.0466	0.5
Strontium	Sr	EPA 200.8 ⁴	μg/L	0.0246	0.5
Titowinne	т:	EPA 200.8 ³	μg/L	0.059	1
litanium	11	EPA 200.8 ⁴	μg/L	0.316	1
The Illium		EPA 200.8 ³	μg/L	0.0545	0.25
Thailium	11	EPA 200.8 ⁴	μg/L	0.96	5
Vanadium	N/	EPA 200.8 ³	μg/L	0.258	2.5
vanadium	v	EPA 200.8 ⁴	μg/L	6.869	15
Zine	7.5	EPA 200.8 ³	μg/L	2.48	5
∠ınc	Zn	EPA 200.8 ⁴	μg/L	1.1	5
Hardness	Hardness (calc.)	SM 2340B ²	mg/L	CaCO3 mg/L = (2.497*Ca mg/L)+(4.118*Mg mg/L)	
Escherichia coli	E. coli	SM9223 Colilert QT (18 & 24 Hour)	MPN/100mL	1 MPN	1 MPN
Chlorophyll a	Chlorophyll a	EPA 445.0	μg/L	0.21	1
Chemical Oxygen Demand	COD	EPA 410.4	mg/L	4.2	20

Parameter	Additional Name	Test	Unit 2024 2024 Minimum Practi Detection Quantita Limit Limi		
Biological Oxygen Demand	BOD	SM 5210 ²	mg/L	2	N/A
Total Solids	TS	SM 2540 B ²	mg/L	5	10
Total Suspended Solids	TSS	SM 2540 D ²	mg/L	0.86	2
Total Dissolved Solids	TDS	SM 2540 C ²	mg/L	5	10
Turbidity **		EPA 180.1	NTU	0.3	1
Field Parameter	Additional Name	Test	(Value Reported	in)
рН		SM 4500 H+B		s.u.	
Conductivity		SM 2510A ²		μs/cm	
Specific Conductivity		SM 2510B ²	μs/cm		
Dissolved Oxygen	DO	SM 4500-0 G ²		mg/L	
Temperature	Temp	EPA 1701.1 ²	°C		
Turbidity **		EPA 180.1		NTU	

¹ Listed MDL/PQL is for undistilled samples. Any samples that require distillation will have a MDL = 0.065 mg/L, PQL = 0.150 mg/L

² <u>Standard Methods for the Examination of Water and Wastewater</u>, Method approved by Standard Methods Committee, 1997. Editorial revisions, 2011.

³ MDLs and PQLs specific to ICP-MS Xseries instrument

⁴ MDLs and PQLs specific to ICP-MS qNOVA instrument

** Turbidity will either be completed in the field or at the laboratory.

Appendix C. Meter Specifications

The YSI 600XL and 600XLM

YSI 600XL and 600XLM Sondes

Measure multiple parameters simultaneously

The YSI 600XL and YSI 600XLM compact sondes measure eleven parameters simultaneously:

Temperature Conductivity Specific Conductance Salinity Resistivity TDS pH ORP Depth or Level Rapid Pulse[™] DO (% and mg/L)

Connect with Data Collection Platforms

Either sonde can easily connect to the YSI 6200 DAS (Data Acquisition System), YSI EcoNet[™] or your own data collection platform, via SDI-12 for remote and real-time data acquisition applications.

Economical Logging System

The YSI 600XLM is an economical logging system for long-term, *in situ* monitoring and profiling. It will log all parameters at programmable intervals and store 150,000 readings. At one-hour intervals, the instrument will log data for about 75 days utilizing its own power source. The 600XL can also be utilized in the same manner with user-supplied external power.

- Either sonde fits down 2-inch wells
- Horizontal measurements in very shallow waters
- Stirring-independent Rapid Pulse* dissolved oxygen sensor
- Field-replaceable sensors
- Easily connects to data collection platforms
- Available with detachable cables to measure depth up to 200 feet
- Compatible with YSI 650 Multiparameter Display System
- Use with the YSI 5083 flow cell for groundwater applications

Economical, multiparameter sampling or logging in a compact sonde

Sensor performance verified*

The $6820 \vee 2$ and $6920 \vee 2$ sondes use sensor technology that was verified through the US EPA's Environmental Technology Verification Program (ETV). For information on which sensors were performance-verified, turn this sheet over and look for the ETV logo.

To order, or for more info, contact YSI Environmental.

+1 937 767 7241 800 897 4151 (US) www.ysi.com

YSI Environmental +1 937 767 7241 Fax +1 937 767 9353 environmental@ysi.com

Endeco/YSI +1 508 748 0366 Fax +1 508 748 2543 systems@ysi.com

SonTek/YSI +1 858 546 8327 Fax +1 858 546 8150 inquiry@sontek.com

YSI Gulf Coast +1 225 753 2650 Fax +1 225 753 8669 environmental@ysi.com

YSI Hydrodata (UK) +44 1462 673 581 Fax +44 1462 673 582 europe@ysi.com

YSI Middle East (Bahrain) +973 1753 6222 Fax +973 1753 6333 halsalem@ysi.com

YSI (Hong Kong) Limited +852 2891 8154 Fax +852 2834 0034 hongkong@ysi.com

YSI (China) Limited +86 10 5203 9675 Fax +86 10 5203 9679 heijing@ysi-china.com

YS1 Nanotech (Japan) +81 44 222 0009 Fax +81 44 221 1102 nanotech@ysi.com

ROX and Rapid Pulse are trademarks and FeaWatch, Pure Data for n Healthy Planet and Who's Minding the Planet? are registered trademarks of YSI Incorporated.

© Printed in USA 0107 E55-01

Senses with latted with the EUV lagstwere submitted in the EUV papersion like V314902B. It is the transitions on the parameters are been under the end of the end of the sense ranked from all submitted for the end of the sense ranked from all submitted for the end of the sense ranked from a sense may for a sense may for a sense of the sense

YS1 incorporated Who's Minding the Planet?

To overla a overlan bender opechicane	OXL & 600XLM Sensor Specification
---------------------------------------	-----------------------------------

	Range	Resolution	Accuracy
Dissolved Oxygen % Saturation 6562 Rapid Pulse" Sensor*	0 to 500%	0,1%	0 to 200%: ±2% of reading or 2% air saturation, whichever is greater; 200 to 500%: ±6% of reading
Dissolved Oxygen mg/L 6562 Rapid Pulse" Sensor*	0 to 50 mg/L	0.Q1 mg/L	0 to 20 mg/L: ± 0.2 mg/L or 2% of reading, whichever is greater; 20 to 50 mg/L: ±6% of reading
Conductivity" 6560 Sensor [#] ETV	0 to 100 mS/cm	0.001 to 0.1 mS/cm (range dependent)	±0.5% of reading + 0,001 m\$/cm
Salinity	0 to 70 ppt	0.01 ppt	±1% of reading or 0.1 ppt, whichever is greater
Température 6560 Sensor*	-5 to +50°C	0.01°C	±0.15°C
pH 6561 Sensor* ETV	Ø to 14 units	0.01 init	±0.2 unit
ORP	+999 to +999 mV	0.1 mV	±20 mV
Depth & Level Medium Shallow Vented Level	0 to 200 ft, 61 m 0 to 30 ft, 9.1 m 0 to 30 ft, 9.1 m	0.001 ft, 0.001 m 0.001 ft, 0.001 m 0.001 ft, 0,001 m	±0,4 fl, ±0.12 m ±0,06 fl, ±0.02 m ±0,01 fl, 0.003 m

Report outputs of specific conductance (conductivity corrected to 25° C), resistivity, and total dissolved solids are
also provided. These values are automatically calculated from conductivity according to algorithms found in Shindard
Methods for the Examination of Water and Wastewater (ed 1989).

YSI 600XL &	600XLA	A Sonde Specifications
Medium		Fresh, set or polluted water
Temperature Op	eroting Storage	-5 to +50°C -10 to +60°C
Communications		RS-232, SDI-12
Software		EcoWatch*
Dimensions 400xL1 400xLM	Diameter Length Weight	1.65 in, 4.19 cm 1.65 in, 4.9 cm 16 in, 40.6 cm 21.3 in, 54.1 cm 1.3 lbs, 0.59 kg 1.5 lbs, 0.69 kg
Power Internal (600	External DXLM only)	12 V DC 4 AA-size alkaline batteries

HI 98129 Combo pH/EC/TDS/Temperature Tester with Low Range EC

Description

The HI 98129 Combo waterproof tester offer high accuracy pH, EC/TDS and temperature measurements in a single tester! No more switching between meters for your routine measurements. The waterproof Combo (it even floats) has a large easy-to-read, dual-level LCD and automatic shut-off. pH and EC/TDS readings are automatically compensated for the effects of temperature (ATC). This technologically advanced tester has a replaceable pH electrode cartridge with an extendable cloth junction as well as an EC/TDS graphite electrode that resists contamination by salts and other substances. This gives these meters a greatly extended life. Your tester no longer needs to be thrown away when the pH sensor is exhausted.

The EC/TDS conversion factor is user selectable as is the temperature compensation coefficient (ß). Fast, efficient, accurate and portable, the Combo pH, EC/TDS and temperature tester brings you all the features you've asked for and more!

Range	pН	0.00 to 14.00 pH
Range	EC	0 to 3999 µS/cm
Range	TDS	0 to 2000 ppm
Range	Temperature	0.0 to 60.0°C / 32 to 140.0°F
Resolution	pН	0.01 pH
Resolution	EC	1 µS/cm
Resolution	TDS	1 ppm
Resolution	Temperature	0.1°C / 0.1°F
Accuracy	pН	±0.05 pH
Accuracy	EC/TDS	±2% F.S.
Accuracy	Temperature	±0.5°C / ±1°F
Temperature		pH: automatic; EC/TDS: automatic with ß adjustable
Compensation		from 0.0 to 2.4% / °C
Calibration	pН	automatic, 1 or 2 points with 2 sets of memorized
		buffers
		(pH 4.01 / 7.01 / 10.01 or 4.01 / 6.86 / 9.18)
Calibration	EC/TDS	automatic, 1 point
TDS Conversion Facto	br	adjustable from 0.45 to 1.00
pH Electrode		HI 73127 (replaceable; included)
Environment		0 to 50°C (32 to 122°F); RH max 100%
Battery Type / Life		4 x 1.5V / approx. 100 hours of continuous use;
		auto-off after 8 minutes of non-use
Dimensions		163 x 40 x 26 mm (6.4 x 1.6 x 1.0")
Weight		100 g (3.5 oz.)

Specifications

(HACH) HQ30d Portable pH, Conductivity, Dissolved Oxygen (DO), ORP, and ISE Multi-Parameter Meter Product#: HQ30D53000000 Quantity USD Price: \$790.00 ★★★★★ 5/5 群 Read 1 miniow White a review # ollow this product Portable meter measures critical water quality parameters - without the need for multiple single imput channel for factble measurement of pH, Conductivity, Dissolved Ozygen (DO), BOD, ORP, Ammonia, Ammonium, Fluoride, Chloride, Sodium, and temperature - any IntelliCAL^{IM} smart probe Intuitive tiser interface for simple operation and accurate results divided calibration and check standard routines reduce calibration errors. Stabilize on alerts and visual measurement lock Guided calibration and check standard routines reduce calibra ensure that you can trust the accuracy of the results. Trust your measurements - IntellIGAL^{IN} smart probes store all cellbrations in the probe Calibration hitry allows quick and eavy drange out of probes whold re-calibration. The HOd^{III} smart system records serial numbers, current calibration data, user ID, sample ID time, and data submatically in the data log for complete GLP transability Designed for demanding conditions Rugged, waterprool (IP67) meter provides worry-tree, reliable operation in lab or field environm Convenient kit includes everything you need to start testing Meter kit includes, 4 AA batteries, quick-start guide, user manual, and documentation CD Specifications AC and USB Operation optional Automatic Buffer Recognition UPAC 1 479 4 005 7 000, 19 01 2, 12 45 DIN 1 09 4 65, 9323 User-defined custom buffer sets Baromatric Pressure Measurement For extomatic compensation of DO when using an LDO or LBOD probe Battery Requirements 4 44 Benchtop with stand BOD5/CBOD resolution Available when used with Hach WIMS BOD Manager software Cable resistance correction Digital - not needed Calibration curves display Calibration summary data logged and displayed Calibration intervals/Alerts/Reminder 2 hours to 7 days Compliance CE WEEE Conductivity Accuracy 2 0 5 % from (1µS/cm - 200 mS/cm) Conductivity measurement 5 different stability modes Conductivity Measurement Range 0 01 µS/cm to 200 mS/cm 0 01 µS/cm with 2 digits Conductivity resolution Custom Calibration Standards User-defined standard sets Download via USB connection to PC or flash stick. Automatically transfer entire data log or as readings are taken Data Export Data Memory 500 results Digital (intelligent) electrode inputs. 2 Dimensions (H x W x D) 7.8 in x 3 7 in x 1.4 in (197 mm x 95 mm x 36 mm) Display readings from the or how probes Simultaneous readings from two probes (4) Pd (4) Dd (4) Pd (4) Pd (4) Pd (4) Pd (4) Dd (4) Pd (4) Pd (4) Pd (4) Dd (4) Pd (4) Pd (4) Dd (4) Pd (4) Pd (4) Pd (4) Pd (4) Dd (4) Pd (Display Display Lock Function Continuous measurement or press to read mode available with averaging function for LDO measurement. and the second second service of the second second service of the second Display Type DO Measurement Range 0 01 to 20 mo/L (0 to 200%) DO Resolution 0 01 mg/L Fixed Buffer Selecton (UPAC standards (DIN 19265) or Technical buffer (DIN 19257) or 4-7-10 series or user M12 digital (1) for intelliCAL probes Inputs. Interface Languages 13** Internal Data Storage 500 IP Rating (P67 English, Franch, German (talian Spanish, Danish, Dutch, Polish, Portuguese, Turkish, Sweedish, Czech, Russian Languages: mV Accuracy ±01mV mV Measurement at Stable Reading 5 (auto) stabilization settings mV Resolution 0.1 mV Operating Error Messages Text messages displayed Operating Humidity 90 % relative humidity (non-condensing) Operating Interface Keyped Operating Temperature 5 to 45 °C ORP Electrode Calibration Predefined ORP standards (including Zobell's sitution) Outputs USB to PC / flash stick PC Data Transfer Software Included pH Measurement at stable reading 5 stabilization settings Printer Optional accessory Salinity Resolution 0 01 ppl Warranty 3 years

Meter Cesing 1 meter submersion for 30 minutes (iP67)

0 74 lbs (0 335 kg)

Water Resisitance

Weight.

2100P and 2100P IS Portable Turbidimeter

Features and Benefits

Laboratory Quality in a Portable Unit

The Hach 2100P and 2100P IS Portable Turbidimeters offer a level of performance previously possible only with laboratory instruments. Microprocessor-controlled operation and Hach's unique Ratio[™] optics bring great accuracy, sensitivity, and reliability to field and in-plant testing.

Two Models for Specific Requirements

- 2100P Turbidimeter—Get fast, accurate turbidity testing in the field or the lab, over a wide range of samples. Compliant with USEPA Method 180.1 design criteria.
- 2100P IS Turbidimeter—Designed to meet international standards that mandate measurement using an LED light source.

Two-detector Optical System

The two-detector optical system compensates for color in the sample, light fluctuation, and stray light, enabling analysts to achieve laboratory-grade performance on a wide range of samples, even under difficult, onsite conditions.

The Hach 2100P and 2100P IS Portable Turbidimeters bring laboratory-level performance on-site, offering fast, accurate results and the ease-of-use analysts demand in the field. With a measurement range of 0 to 1000 NTU and a resolution of 0.01 NTU, the 2100P turbidimeter is ideal for regulatory monitoring, process control or field studies.

Specifications*

	2100P	2100P IS				
Measurement Method	Nephelometric Ratio					
Regulatory	Meets EPA Method 180.1	Meets EN ISO 7027				
Light Source	Tungsten lamp	Light-emitting diode (LED) @ 860 nm				
Range						
Automatic Range Mode	0 to 1000 NTU	0 to 1000 FNU				
Manual Range Selection	0 to 9.99, 0 to 99.9 and 0 to 1000 NTU	0 to 9.99, 0 to 99.9 and 0 to 1000 FNU				
Accuracy	±2% of reading plus stray light					
Repeatability	±1% of reading, or 0.01 NTU, whichever is greater	±1% of reading, or 0.01 FNU, whichever is greater				
Resolution	0.01 on lowest range					
Signal Averaging	Selectable on/off					
Power Requirement	4 AA alkaline batteries or optional battery eliminator	4 AA alkaline batteries or optional battery eliminator				
Battery Life, Typical	300 tests with signal average mode off					
	180 tests with signal average mode on					
Operating Temperature	0 to 50°C (32 to 122°F)					
Sample Required	15 mL (0.5 oz.)					
Sample Cells	60 x 25 mm (2.36 x 1 in.) borosilicate glass with screw caps					
Dimensions	22.2 x 9.5 x 7.9 cm (8.75 x 3.75 x 3.12 in.)					
Weight	0.5 kg (1.1 lb.); shipping weight 2.7 kg (6 lb.)					
Warranty	2 years	······································				

*Specifications subject to change without notice.

DW = drinking water WW = wastewater municipal PW = pure water / power IW = industrial water E = environmental C = collections FB = food and beverage

2100Q and 2100Q is Portable Turbidimeter

Features and Benefits

Easy Calibration and Verification

Hach 2100Q and 2100Q *is* Portable Turbidimeters provide confidence your measurements are right every time. On-screen assisted calibration and verification save you time and ensure accuracy. With an easy-to-follow interface, complicated manuals are not needed to perform routine calibrations. Single-standard RapidCal[™] calibration offers a simplified solution for low level measurements.

Simple Data Transfer

Data transfer with the optional USB + Power Module is simple, flexible, and doesn't require additional software. All data can be transferred to the module and easily downloaded to your computer with a USB connection, providing superior data integrity and availability. With two different module options, you can customize connectivity and power to meet your unique needs.

Accurate for Rapidly Settling Samples

The Hach 2100Q Portable Turbidimeter incorporates an innovative Rapidly Settling Turbidity[™] mode to provide accurate, repeatable measurements for difficult to measure, rapidly settling samples. An exclusive algorithm that

calculates turbidity based on a series of automatic readings eliminates redundant measurements and estimating.

Convenient Data Logging

0

Up to 500 measurements are automatically stored in the instrument for easy access and backup. Stored information includes: date and time, operator ID, reading mode, sample ID, sample number, units, calibration time, calibration status, error messages and the result.

Optical System for Precision in the Fleld

The two-detector optical system compensates for color in the sample, light fluctuation, and stray light, enabling analysts to achieve laboratory-grade performance on a wide range of samples, even under difficult site conditions.

Two Models for Specific Requirements

- 2100Q Turbidimeter—Compliant with USEPA Method 180.1 design criteria.
- 2100Q is Turbidimeter—Compliant with ISO 7027 design criteria.

DW = drinking water WW = wastewater municipal PW = pure water / power IW = Industrial water E = environmental C = collections FB = food and beverage

Specifications*

Measurement Method

Ratio turbidimetric determination using a primary nephelometric light scatter signal (90°) to the transmitted light scatter signal.

Regulatory 2100Q: Meets EPA Method 180.1 2100Q is: Meets ISO 7027

Light Source 2100Q: Tungsten filament lamp 2100Q is: Light-emitting diode (LED) @ 860 nm

Range 0 to 1000 NTU (FNU)

Accuracy ±2% of reading plus stray light from 0 to 1000 NTU

Repeatability $\pm 1\%$ of reading, or 0.01 NTU (FNU), whichever is greater

Resolution 0.01 NTU on lowest range

Stray Light <0.02 NTU (FNU)

Signal Averaging Selectable on/off

Detector Silicon photovoltaic

Reading Modes (user selectable) Normal (Push to Read) Signal Averaging Rapidly Settling Turbidity

Data Logger 500 records

Power Requirement 110-230 Vac, 50/60 Hz (with Power or USB+Power Module) 4 AA alkaline batteries Rechargeable NiMH (for use with USB+Power Module) Operating Conditions Temperature: 0 to 50°C (32 to 122°F) Relative Humidity: 0 to 90% @ 30°C, 0 to 80% @ 40°C, 0 to 70% @ 50°C, noncondensing

Storage Conditions -40 to 60°C (-40 to 140°F), instrument only

Languages English, French, German, Italian, Spanish, Portuguese (BR), Portuguese (PT), Bulgarian, Chinese, Czech, Danish, Dutch, Finnish, Greek, Hungarian, Japanese, Korean, Polish, Romanian, Russian, Slovenian, Swedish, Turkish

Interface Optional USB

Instrument Enclosure Rating IP67 (closed lid, battery compartment excluded)

Protection Class Power Supply: Class II

Certification CE certified

Sample Required 15 mL (0.3 oz.)

Sample Cells 60 x 25 mm (2.36 x 1 in.) borosilicate glass with screw cap

Dimensions 22.9 x 10.7 x 7.7 cm (9.0 x4.2 x 3.0 in.)

Weight 527 g (1.16 lb) without batteries 618 g (1.36 lb) with four AA alkaline batteries

Warranty 1 year

Sondes: EXO1 EXO2

Cable connector, battery valve, and expansion port for an additional sensor

EXO2 sonde contains 6 universal sensor ports plus a central port for an anti-fouling wiper

Battery Compartment

Cutaway: Reinforced internal structure

Anti-fouling wiper keeps sensors clear of biofouling and lengthens deployment times by 25%

Welded Titanium Housing

EXO1 sonde contains 4 universal sensor ports

Instrument Specifications*

EXO1 Sonde					
Ports	4 sensor ports Peripheral port: 1 power communication	port			
Size	Diameter: 4.70 cm (1.85 in) Length: 64.77 cm (25.50 in)				
Weight	1.42 kg (3.15 lbs) with 4 probes, guard a	1.42 kg (3.15 lbs) with 4 probes, guard and batteries installed			
EXO2 Sonde	3, , , , , , , , , , , , , , , , , , ,				
Ports	7 sensor ports (6 ports available when ce Peripheral ports: 1 power communication	entral wiper used) n port; 1 auxiliary expansion port			
Size	Diameter: 7.62 cm (3.00 in) Length: 71.10 cm (28.00 in)				
Weight	3.60 kg (7.90 lbs) with 5 probes, guard a	nd batteries installed			
Sondes					
Operating Temperature	-5 to 50°C				
Storage Temperature	-20 to 80°C (except 0 to 60°C for pH and	pH/ORP sensors)			
Depth Rating	0 to 250 m (0 to 820 ft)				
Communications	Computer Interface: Bluetooth wireless t Output Options: USB with signal output a	echnology, RS-485, USB Idapter (SOA); RS-232 & SDI-12 with DCP-SOA			
Sample Rate	Up to 4 Hz				
Battery Life	90 days**				
Data Memory	512 MB total memory; >1,000,000 logge	ed readings			
Sensors		Calculated Parameters			
Ammonium	ORP	Salinity			
Chloride	рН	Specific Conductance			
Conductivity	Temperature	Total Dissolved Solids			
Depth	Total Algae (Chlorophyll + BGA-PC or PE)	Total Suspended Solids			
Dissolved Oxygen	Turbidity				
Fluorescent Dissolved Organic Matter (fDOM)	Vented Level				
Nitrate					
EXO Handheld					
Size	Width: 12.00 cm (4.72 in) Height: 25.00 cm (9.84 in)				
Weight	0.71 kg (1.56 lbs) without batteries				
Operating System	Windows CE 5.0				
Operating Temperature	-10 to 50°C				
Storage Temperature	-20 to 80°C				
IP Rating	IP-67				
Data Memory	2 GB total memory; >2,000,000 data sets	S			
Accessories					
Cables (vented and non-vented)	Flow cells	Sonde/sensor guard			
Carrying case	KOR software	Calibration cup			
DCP Signal Output Adapter	USB Signal Output Adapter	Anti-fouling components			
Warranty					
3 months	Replaceable reagent modules for ammo	nium, chloride, and nitrate			
1 Year	Optical DO membranes and replaceable	e reagent moldules for pH and pH/ORP			
2 Years	Cables; sonde bulkheads; handheld; conductivity, temperature, depth, and optical sensors; electronics base for pH, pH/ORP, ammonium, chloride, and nitrate sensors; and accessories				

* Specifications indicate typical performance and are subject to change.

Please check EXOwater.com for up-to-date information.

EXO Bluetooth modules comply with Part 15C of FCC Rules and have FCC, CE Mark and C-tick approval. Bluetooth-type approvals and regulations can be country specific. Check local laws and regulations to insure that the use of wireless products purchased from Xylem are in full compliance.

** Typically 90 days at 20°C at 15-minute logging interval; temperature/conductivity, pH/ ORP, DO, and turbidity sensors installed on EXO1; or temperature/conductivity, pH/ORP, DO, total algae, and turbidity sensors installed with central wiper that rotates once per logging interval on EXO2. Battery life is heavily dependent on sensor configuration. 10

Sensor Specifications*

Sensor	Range	Accuracy*	Response	Resolution	
Ammonium ¹¹ (ammonia with pH sensor)	0 to 200 mg/L ¹	±10% of reading or 2 mg/L-N, w.i.g.	-	0.01 mg/L	
Barometer	375 to 825 mmHg	±1.5 mmHg from 0 to 50°C	-	0.1 mmHg	
Blue-green Algae Phycocyanin (PC) (part of Total Algae sensor)	0 to 100 RFU; 0 to 100 µg/L PC	Linearity: $R^2 > 0.999$ for serial dilution of Rhodamine WT solution from 0 to 100 µg/mL PC equivalents	T63<2 sec	0.01 RFU; 0.01 µg/L PC	
Blue-green Algae Phycoerythrin (PE) (part of Total Algae sensor)	0 to 100 RFU; 0 to 280 µg/L PE	Linearity: R ² > 0.999 for serial dilution of Rhodamine WT solution from 0 to 280 µg/mL PE equivalents	T63<2 sec	0.01 RFU; 0.01 μg/L PE	
Chloride ¹¹	0 to 1000 mg/L-Cl ²	±15% of reading or 5 mg/L-Cl, w.i.g.	-	0.01 mg/L	
Chlorophyll (part of Total Algae sensor)	0 to 400 μg/L Chl; 0 to 100 RFU	Linearity: R ² > 0.999 for serial dilution of Rhodamine WT solution from 0 to 400 µg/L Chl equivalents	T63<2 sec	0.01 μg/L Chl; 0.01 RFU	
Conductivity ³	0 to 200 mS/cm	0 to 100: ±0.5% of reading or 0.001 mS/cm, w.i.g.; 100 to 200: ±1% of reading	T63<2 sec	0.0001 to 0.01 mS/cm (range dependent)	
	0 to 10 m (0 to 33 ft)	±0.04% FS (±0.004 m or ±0.013 ft)			
Depth ⁴ (non-vented)	0 to 100 m (0 to 328 ft)	±0.04% FS (±0.04 m or ±0.13 ft)	T(2, 2) and	0.001 m (0.001 ft)	
(0 to 250 m (0 to 820 ft)	±0.04% FS (±0.10 m or ±0.33 ft)	103<2 Sec	(auto-ranging)	
Vented Level	0 to 10 m (0 to 33 ft)	±0.03% FS (±0.003 m or ±0.010 ft)			
Dissolved Oxygen	0 to 500% air saturation	0 to 200%: ±1% of reading or 1% saturation, w.i.g.; 200 to 500%: ±5% of reading ⁵	T() (F 6	0.1% air saturation	
Optical	0 to 50 mg/L	0 to 20 mg/L: \pm 0.1 mg/L or 1% of reading, w.i.g.; 20 to 50 mg/L: \pm 5% of reading ⁵	103<5 Sec *	0.01 mg/L	
fDOM	0 to 300 ppb Quinine Sulfate equivalents (QSE)	Linearity: R ² > 0.999 for serial dilution of 300 ppb QS solution Detection Limit: 0.07 ppb QSE	T63<2 sec	0.01 ppb QSE	
Nitrate ¹¹	0 to 200 mg/L-N ¹	±10% of reading or 2 mg/L-N, w.i.g.	-	0.01 mg/L	
ORP	-999 to 999 mV	±20 mV in Redox standard solutions	T63<5 sec 7	0.1 mV	
рН	0 to 14 units	±0.1 pH units within ±10°C of calibra- tion temp; ±0.2 pH units for entire temp range ⁸	T63<3 sec ⁹	0.01 units	
Salinity (Calculated from Conductivity and Temperature)	0 to 70 ppt	±1.0% of reading or 0.1 ppt, w.i.g.	T63<2 sec	0.01 ppt	
Specific Conductance (Calculated from Cond. and Temp.)	0 to 200 mS/cm	±0.5% of reading or .001 mS/cm, w.i.g.	-	0.001, 0.01, 0.1 mS/cm (auto-scaling)	
Temperature	-5 to 50°C	-5 to 35°C: ±0.01°C ¹⁰ 35 to 50°C: ±0.05°C ¹⁰	T63<1 sec	0.001 °C	
Total Dissolved Solids (TDS) (Calculated from Conductivity and Temperature)	0 to 100,000 g/L Cal constant range 0.30 to 1.00 (0.64 default)	Not Specified	-	variable	
Total Suspended Solids (TSS) (Calculated from Turbidity and user reference samples)	0 to 1500 mg/L	Not Specified	T63<2 sec	variable	
Turbidity ¹¹	0 to 4000 FNU	0 to 999 FNU: 0.3 FNU or $\pm 2\%$ of reading, w.i.g.; 1000 to 4000 FNU: $\pm 5\%$ of reading 12	T63<2 sec	0 to 999 FNU: 0.01 FNU; 1000 to 4000 FNU: 0.1 FNU	

All sensors have a depth rating to 250 m (820 ft), except shallow and medium depth sensors and ISEs. EXO sensors are not backward compatible with 6-Series sondes.

* Specifications indicate typical performance and are subject to change. Please check EXOwater.com for up-to-date information. Accuracy specification is attained immediately following calibration under controlled and stable environmental conditions. Performance in the natural environment may vary from quoted specification.

² 0-40°C ¹ 0-30°C w.i.g. = whichever is greater

¹0-30 C
 ³ Outputs of specific conductance (conductivity corrected to 25°C) and total dissolved solids are also provided. The values are automatically calculated from conductivity according to algorithms found in *Standard Methods for the Examination of Water and Wastewater* (Ed. 1989).

⁴ Accuracy specifications apply to conductivity levels of 0 to 100,000 μS/cm.
 ⁵ Relative to calibration gases
 ⁶ When transferred from air-saturated water to stirred deaerated water
 ⁷ When transferred from water-saturated air to Zobell solution

⁸ Within transferred from water-saturated air to Zoben solution
 ⁸ Within the environmental pH range of pH 4 to pH 10
 ⁹ On transfer from water-saturated air to rapidly stirred air-saturated water at a specific conductance of 800 µS/cm at 20°C; T63<5 seconds on transfer from water-saturated air to slowly-stirred air-saturated water.
 ¹⁰ Temperature accuracy traceable to NIST standards
 ¹¹ Cellinet 1.002 performentation water before the based on the standards

¹¹ Calibration: 1-, 2-, or 3-point, user-selectable ¹² Specification is defined in AMCO-AEPA Standards

FH950 Portable Velocity Meter with 20' Cable

Product #: FH950.10020 Quantity USD Price: \$4,585.00 Ships within 2 weeks

Reduce manhours 50%

The step-by-step user interface simplifies programming, delivers real-time data, and downloads directly to PC allowing a single person to take the readings and eliminating post site visit manual data transfer from logbook to PC

Automatically calculates total discharge based on USGS and ISO methods Reduces time to manually calculate and likelihood of errors

Real-time velocity graphed on color display Visualize velocity trends quickly

Lowest maintenance solution on the market Electromagnetic velocity sensor with no moving parts never requires mechanical maintenance

Lightweight, rugged portable meter

Only 1.5 pounds

What's in the box

FH950.1 System Includes:

- Portable Velocity Meter
- Electromagnetic Sensor with 20' cable
- Fabric Carrying Case
- Adjustable Meter Rod Mount
- Universal Sensor Mount
- Battery Charger with Domestic/International Plug Adapters
- USB Cable
- Lanyard
- Sensor Screw Kit
- Absorbent Wipe

Specifications

Accuracy 2:	\pm 2% of reading \pm 0.05 ft/s (\pm 0.015 m/s) through the range of 0 to 10 ft/s (0 to 3.04 ms/s); \pm 4% of reading from 10 to 16 ft/s (3.04 to 4.87 m/s)
Battery Life:	heavy typical day use; 68°F (20°C)
Display: LCD:	Color, LCD 3.5 QVGA transflective (readable in direct sunlight)
Keypad:	Alpha-numerica
Operating Temperature Range:	-20 to 55 °C
Range:	to ft/s
Resolution:	Measurement Resolution - <10: 0.001; <100: 0.01; >100: 0.1
Storage Conditions:	-20 °C to 60 °C

Appendix D. Chlorophyll a Field Form

Stream:	Collectors	s:			
Location:	Date:				
RM:	Time:				
Lat/Long:					
Number of Rocks:	Total Area Scraped:	cm ²			
			Diameter to Are	ea Conversion	
Diameter of individual scrape	Area of individual scrape		Diameter (cm)	Area (cm2)	
1	1		1.6	2.011	
2	2		1.7	2.27	
3	3		1.8	2.545	
4	4		1.9	2.835	
5	5		2.0	3.142	
6	6		2.1	3.464	
7	7		2.2	3.801	
8	8		2.3	4.155	
9	9				
10	10		Total Sample V	olume	ml
11	11	Filter 1	LABLynx ID		
12	12		Vol	_ml	
13	13				
14	14	Filter 2	LABLynx ID		
15	15		Vol	_ml	
16	16				
17	17	Filter 3	LABLynx ID		
18	18		Vol	_ml	
19	19				
20	20				
21	21	۱	Nater Column C	hlorophyll Samp	le
22	22	Filter 1	LABLynx ID		
23	23		Vol	_ml	
24	24				
25	25	Filter 2	LABLynx ID		
	Total:		Vol	_ml	
		Filter 3	LABLynx ID		
			Vol	_ml	
		L			

NEORSD Chlorophyll a Sampling Field Sheet

Flow:	None	Low	Normal	Elevated	High
Turbidity: *Explain	Clear	Low	Moderate*	High*	
Sky:	Overcast	Cloudy	Partly Cloudy	Mostly Clear	Clear
Canopy:	Open	Mostly Open	Partly Closed	Closed	
Riparian	None	Narrow L R	Moderate L R	Wide L R	

Downstream Channel Direction	Record two most predominate substrates with an X, and check					
0° / 30°	all present.					
330° N 50						
60°	Riffle Run Reach					
3005	Bouldel/Slabs					
	Boulder/Slabs					
270° – W E – 90°	Cobble					
	Gravel					
4	Sand					
240° 120°	Silt					
	Hardpan					
210° 7 150°	Detritus					
180°						
Clinometer	Substrate Origin					
	LimestoneTillsRip-rap					
Left Bank°	SandstoneShaleWetlands					
Right Bank°	LacustrineHardpanCoal Fines					
l eft Bank °	Silt					
Right Bank °	Heavy Moderate Normal None					
Left Bank°	Embeddedness					
Right Bank°	ExtensiveModerateNormalNone					
Stream Widths						
mmm						
Notes:						

Length of Reach: _____m

Stream Drawing

Appendix E. Laboratory Certifications

State of New Hampshire Environmental Laboratory Accreditation Program Awards

PRIMARY NH ELAP ACCREDITATION

to

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES (#2238) of

CUYAHOGA HEIGHTS, OH

For the matrix, method and analytes listed on the latest Analyte List in accordance with the provisions on the 2016 TNI Standards and Env-C 300.

Certificate Number: 223823 Effective Date: 12/1/2023 Expiration Date: 11/30/2024 Laboratory ID: 2238

Bill Hall NH ELAP Program Manager

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST

ANALYTE LIST NUMBER: 223823-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES

4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

Analyte Code		Analyte Name	Effective Date	Expiration Date	Matrix	Category Ac	cr. Type
Method Code: 20211	443	Method Ref: SM 9223 B (COLILERT [®] QUANTI-TRA	Y®)	Revision: 23RD ED)	Date: 2016	
2525	ESCHE	ERICHIA COLI	03/23/2021	11/30/2024	D	MIC	NE
2500	TOTA	L COLIFORMS	03/23/2021	11/30/2024	D	MIC	NE
Method Code: 20213	449	Method Ref: SM 9223 B (COLILERT®-18 QUANTI-	ſRAY®)	Revision: 23RD ED)	Date: 2016	
2525	ESCHE	ERICHIA COLI	03/23/2021	11/30/2024	D	MIC	NE
2500	TOTA	L COLIFORMS	03/23/2021	11/30/2024	D	MIC	NE
Method Code: 20214	431	Method Ref: SM 9223 B (COLILERT®-18)		Revision: 23RD ED)	Date: 2016	
2525	ESCHE	ERICHIA COLI	03/23/2021	11/30/2024	D	MIC	NE
2500	TOTA	L COLIFORMS	03/23/2021	11/30/2024	D	MIC	NE
Method Code: 20214	442	Method Ref: SM 9223 B (COLILERT®)		Revision: 23RD ED)	Date: 2016	
2525	ESCHE	ERICHIA COLI	03/23/2021	11/30/2024	D	MIC	NE
2500	TOTA	L COLIFORMS	03/23/2021	11/30/2024	D	MIC	NE
Method Code: 10013	806	Method Ref: EPA 200.7		Revision: 4.4		Date: 1994	
1000	ALUM	IINUM	03/23/2021	11/30/2024	D	MET	NE
1015	BARIL	IM	03/23/2021	11/30/2024	D	MET	NE
1020	BERYL	LIUM	03/23/2021	11/30/2024	D	MET	NE
1030	CADN	11UM	03/23/2021	11/30/2024	D	MET	NE
1035	CALCI	UM	03/23/2021	11/30/2024	D	MET	NE
1040	CHRO	MIUM	03/23/2021	11/30/2024	D	MET	NE
1055	COPPI	ER	03/23/2021	11/30/2024	D	MET	NE
1070	IRON		03/23/2021	11/30/2024	D	MET	NE
1085	MAG	NESIUM	03/23/2021	11/30/2024	D	MET	NE
1090	MANG	GANESE	03/23/2021	11/30/2024	D	MET	NE
1105	NICKE	L	03/23/2021	11/30/2024	D	MET	NE
1150	SILVE	R	03/23/2021	11/30/2024	D	MET	NE
1155	SODIL	JM	03/23/2021	11/30/2024	D	MET	NE
1190	ZINC		03/23/2021	11/30/2024	D	MET	NE
Method Code: 10014	605	Method Ref: EPA 200.8	,,	Revision: 5.4	_	Date: 1994	
1000	ALUM	IINUM	03/23/2021	11/30/2024	D	MET	NE
1005	ANTIN	ΛΟΝΥ	03/23/2021	11/30/2024	D	MET	NE
1010	ARSEN	NIC	03/23/2021	11/30/2024	D	MET	NE
1015	BARIL	JM	03/23/2021	11/30/2024	D	MET	NE
1030	CADM	IIUM	03/23/2021	11/30/2024	D	MET	NE
1040	CHRO	MUM	03/23/2021	11/30/2024	D	MFT	NF
1055	COPPI	FR	01/25/2021	11/30/2024	D	MET	NE
1000	COFFI		01/20/2022	11/30/2024	0		

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST

ANALYTE LIST NUMBER: 223823-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES

4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

1075	LEAD		03/23/2021	11/30/2024	D	MET	NE
1090	MANG	GANESE	03/23/2021	11/30/2024	D	MET	NE
1105	NICKE	iL	03/23/2021	11/30/2024	D	MET	NE
1140	SELEN	IIUM	03/23/2021	11/30/2024	D	MET	NE
1150	SILVE	R	03/23/2021	11/30/2024	D	MET	NE
1190	ZINC		03/23/2021	11/30/2024	D	MET	NE
Method Code: 10036	609	Method Ref: EPA 245.1		Revision: 3		Date: 1994	
1095	MERC	CURY	03/23/2021	11/30/2024	D	MET	NE
Method Code: 100118	800	Method Ref: EPA 180.1		Revision: 2.0		Date: 1993	
2055	TURBI	IDITY	03/23/2021	11/30/2024	D	NMI	NE
Method Code: 10013	806	Method Ref: EPA 200.7		Revision: 4.4		Date: 1994	
1755	TOTA	L HARDNESS AS CACO3	03/29/2021	11/30/2024	D	NMI	NE
Method Code: 100532	200	Method Ref: EPA 300.0		Revision: 2.1	Date: 1993		
1575	CHLO	RIDE	03/23/2021	11/30/2024	D	NMI	NE
1730	FLUO	RIDE	12/07/2021	11/30/2024	D	NMI	NE
1810	NITRA	ATE AS N	03/23/2021	11/30/2024	D	NMI	NE
1840	NITRI	TE AS N	03/23/2021	11/30/2024	D	NMI	NE
1870	ORTH	OPHOSPHATE AS P	03/23/2021	11/30/2024	D	NMI	NE
2000	SULFA	ATE	03/23/2021	11/30/2024	D	NMI	NE
Method Code: 10070	005	Method Ref: EPA 365.1		Revision: 2		Date: 1993	
1870	ORTH	OPHOSPHATE AS P	03/23/2021	11/30/2024	D	NMI	NE
Method Code: 20048	617	Method Ref: SM 2510 B-2011		Revision:		Date: 2011	
1610	COND	UCTIVITY	03/23/2021	11/30/2024	D	NMI	NE
Method Code: 200504	457	Method Ref: SM 2540 C		Revision: 23RD ED		Date: 2015	
1955	RESID	UE-FILTERABLE (TDS)	03/23/2021	11/30/2024	D	NMI	NE
Method Code: 201024	414	Method Ref: SM 4500-F C-2011		Revision:		Date: 2011	
1730	FLUO	RIDE	03/23/2021	11/30/2024	D	NMI	NE
Method Code: 201052	220	Method Ref: SM 4500-H+ B-2011		Revision:		Date: 2011	
1900	PH		03/23/2021	11/30/2024	D	NMI	NE
Method Code: 600440	088	Method Ref: NECI NITRATE-REDUCTASE		Revision:		Date: 2016	
1810	NITRA	NTE AS N	11/20/2023	11/30/2024	D	NMI	CN
1820	NITRA	TE PLUS NITRITE AS N	11/20/2023	11/30/2024	D	NMI	CN
1840	NITRI	TE AS N	11/20/2023	11/30/2024	D	NMI	CN
Method Code: 202114	443	Method Ref: SM 9223 B (COLILERT® QUANTI-TRA	Y®)	Revision: 23RD ED		Date: 2016	
2525	ESCHE	ERICHIA COLI	03/23/2021	11/30/2024	Ν	MIC	NE
2500	TOTA	L COLIFORMS	03/23/2021	11/30/2024	Ν	MIC	NE
Method Code: 202134	449	Method Ref: SM 9223 B (COLILERT [®] -18 QUANTI-1	ſRAY®)	Revision: 23RD ED		Date: 2016	
2525	ESCHE	ERICHIA COLI	03/23/2021	11/30/2024	Ν	MIC	NE

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST

ANALYTE LIST NUMBER: 223823-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES

4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

2500	TOTAL COLIFORMS	03/16/2021	11/30/2024	Ν	MIC	NE
Method Code: 1001	3806 Method Ref: EPA 200.7		Revision: 4.4		Date: 1994	
1000	ALUMINUM	12/01/2019	11/30/2024	Ν	MET	NE
1005	ANTIMONY	12/01/2019	11/30/2024	Ν	MET	NE
1010	ARSENIC	12/01/2019	11/30/2024	Ν	MET	NE
1015	BARIUM	12/01/2019	11/30/2024	Ν	MET	NE
1020	BERYLLIUM	12/01/2019	11/30/2024	Ν	MET	NE
1030	CADMIUM	12/01/2019	11/30/2024	Ν	MET	NE
1035	CALCIUM	12/01/2019	11/30/2024	Ν	MET	NE
1040	CHROMIUM	12/01/2019	11/30/2024	Ν	MET	NE
1050	COBALT	12/01/2019	11/30/2024	Ν	MET	NE
1055	COPPER	12/01/2019	11/30/2024	Ν	MET	NE
1070	IRON	12/01/2019	11/30/2024	Ν	MET	NE
1075	LEAD	12/01/2019	11/30/2024	Ν	MET	NE
1085	MAGNESIUM	12/01/2019	11/30/2024	Ν	MET	NE
1090	MANGANESE	12/01/2019	11/30/2024	Ν	MET	NE
1100	MOLYBDENUM	12/01/2019	11/30/2024	Ν	MET	NE
1105	NICKEL	12/01/2019	11/30/2024	Ν	MET	NE
1125	POTASSIUM	12/01/2019	11/30/2024	Ν	MET	NE
1140	SELENIUM	12/01/2019	11/30/2024	Ν	MET	NE
1150	SILVER	12/01/2019	11/30/2024	Ν	MET	NE
1155	SODIUM	12/01/2019	11/30/2024	Ν	MET	NE
1160	STRONTIUM	12/01/2019	11/30/2024	Ν	MET	NE
1165	THALLIUM	12/01/2019	11/30/2024	Ν	MET	NE
1175	TIN	12/01/2019	11/30/2024	Ν	MET	NE
1180	TITANIUM	12/01/2019	11/30/2024	Ν	MET	NE
1185	VANADIUM	12/01/2019	11/30/2024	Ν	MET	NE
1190	ZINC	12/01/2019	11/30/2024	Ν	MET	NE
Method Code: 1001	4605 Method Ref: EPA 200.8		Revision: 5.4		Date: 1994	
1000	ALUMINUM	12/01/2019	11/30/2024	Ν	MET	NE
1005	ANTIMONY	12/01/2019	11/30/2024	Ν	MET	NE
1010	ARSENIC	12/01/2019	11/30/2024	Ν	MET	NE
1015	BARIUM	12/01/2019	11/30/2024	Ν	MET	NE
1020	BERYLLIUM	12/01/2019	11/30/2024	Ν	MET	NE
1030	CADMIUM	12/01/2019	11/30/2024	Ν	MET	NE
1035	CALCIUM	12/01/2019	11/30/2024	Ν	MET	NE

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST

ANALYTE LIST NUMBER: 223823-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES

4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

1040	CHRON	ЛІЛМ	12/01/2019	11/30/2024	N	MET	NE
1050	COBAL	Т	12/01/2019	11/30/2024	Ν	MET	NE
1055	COPPE	R	12/01/2019	11/30/2024	Ν	MET	NE
1070	IRON		12/01/2019	11/30/2024	Ν	MET	NE
1075	LEAD		12/01/2019	11/30/2024	Ν	MET	NE
1085	MAGN	ESIUM	12/01/2019	11/30/2024	Ν	MET	NE
1090	MANG	ANESE	12/01/2019	11/30/2024	Ν	MET	NE
1100	MOLYE	BDENUM	12/01/2019	11/30/2024	Ν	MET	NE
1105	NICKEL	-	12/01/2019	11/30/2024	Ν	MET	NE
1125	POTAS	SIUM	12/01/2019	11/30/2024	Ν	MET	NE
1140	SELENI	UM	12/01/2019	11/30/2024	Ν	MET	NE
1150	SILVER		12/01/2019	11/30/2024	Ν	MET	NE
1155	SODIU	Μ	12/01/2019	11/30/2024	Ν	MET	NE
1160	STRON	TIUM	12/01/2019	11/30/2024	Ν	MET	NE
1175	TIN		12/01/2019	11/30/2024	Ν	MET	NE
1180	TITANI	UM	12/01/2019	11/30/2024	Ν	MET	NE
1185	VANAD	DIUM	12/01/2019	11/30/2024	N	MET	NE
1190	ZINC		12/01/2019	11/30/2024	Ν	MET	NE
Method Code: 10	od Code: 10036609 Method Ref: EPA 245.1			Revision: 3		Date: 1994	
1095	MERCU	JRY	12/01/2019	11/30/2024	Ν	MET	NE
Method Code: 10	237204	Method Ref: EPA 1631E		Revision:		Date: 2002	
1095	MERCU	JRY	12/01/2019	11/30/2024	Ν	MET	NE
Method Code: 20	066266	Method Ref: SM 3500-CR B-2011		Revision:		Date: 2011	
1045	CHRON	AIUM (VI)	12/01/2019	11/30/2024	Ν	MET	NE
Method Code: 10	011800	Method Ref: EPA 180.1		Revision: 2.0		Date: 1993	
2055	TURBI	ΥΤΙΟ	12/01/2019	11/30/2024	Ν	NMI	NE
Method Code: 10	013806	Method Ref: EPA 200.7		Revision: 4.4		Date: 1994	
1755	TOTAL	HARDNESS AS CACO3	03/29/2021	11/30/2024	Ν	NMI	NE
Method Code: 10	014605	Method Ref: EPA 200.8		Revision: 5.4		Date: 1994	
1755	TOTAL	HARDNESS AS CACO3	03/29/2021	11/30/2024	Ν	NMI	NE
Method Code: 10	053200	Method Ref: EPA 300.0		Revision: 2.1		Date: 1993	
1540	BROM	IDE	12/01/2019	11/30/2024	Ν	NMI	NE
1575	CHLOR	IDE	12/01/2019	11/30/2024	Ν	NMI	NE
1810	NITRA	TE AS N	12/01/2019	11/30/2024	Ν	NMI	NE
1840	NITRIT	E AS N	12/01/2019	11/30/2024	Ν	NMI	NE
1870	ORTHO	OPHOSPHATE AS P	12/01/2019	11/30/2024	Ν	NMI	NE
2000	SULFA	TE	12/01/2019	11/30/2024	Ν	NMI	NE

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST

ANALYTE LIST NUMBER: 223823-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES

4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

Method Code: 10055	5206	Method Ref: EPA 310.2		Revision:		Date: 1974	
1505	ALKA	LINITY AS CACO3	12/01/2019	11/30/2024	Ν	NMI	NE
Method Code: 10063	8602	Method Ref: EPA 350.1		Revision: 2		Date: 1993	
1515	AMM	IONIA AS N	12/01/2019	11/30/2024	Ν	NMI	NE
Method Code: 1006	5404	Method Ref: EPA 351.2		Revision: 2		Date: 1993	
1795	TOTA	L KJELDAHL NITROGEN (TKN)	12/01/2019	11/30/2024	Ν	NMI	NE
Method Code: 10070	0005	Method Ref: EPA 365.1		Revision: 2		Date: 1993	
1713	DISSC	DLVED REACTIVE PHOSPHORUS	11/26/2022	11/30/2024	Ν	NMI	NE
1870	ORTH	ΙΟΡΗΟΣΡΗΑΤΕ ΑΣ Ρ	12/01/2019	11/30/2024	Ν	NMI	NE
1910	ΤΟΤΑ	L PHOSPHORUS	12/01/2019	11/30/2024	Ν	NMI	NE
Method Code: 10077	7404	Method Ref: EPA 410.4		Revision: 2		Date: 1993	
1565	CHEN	1ICAL OXYGEN DEMAND (COD)	12/01/2019	11/30/2024	Ν	NMI	NE
Method Code: 10079	9400	Method Ref: EPA 420.1		Revision:		Date: 1978	
1905	ΤΟΤΑ	L PHENOLICS	12/01/2019	11/30/2024	Ν	NMI	NE
Method Code: 1026	L 617	Method Ref: EPA 1664B		Revision:		Date: 2010	
1803	N-HE	XANE EXTRACTABLE MATERIAL (O&G)	12/01/2019	11/30/2024	Ν	NMI	NE
Method Code: 20048	3617	Method Ref: SM 2510 B-2011		Revision:		Date: 2011	
1610	CONE	DUCTIVITY	03/23/2021	11/30/2024	Ν	NMI	NE
Method Code: 20049	9438	Method Ref: SM 2540 B-2015		Revision:		Date: 2015	
1950	RESID	DUE-TOTAL (TS)	08/22/2021	11/30/2024	Ν	NMI	NE
Method Code: 20050)457	Method Ref: SM 2540 C		Revision: 23RD ED		Date: 2015	
1955	RESID	DUE-FILTERABLE (TDS)	03/23/2021	11/30/2024	Ν	NMI	NE
Method Code: 2005	223	Method Ref: SM 2540 D-2015		Revision:		Date: 2015	
1960	RESID	DUE-NONFILTERABLE (TSS)	08/22/2021	11/30/2024	Ν	NMI	NE
Method Code: 20080)426	Method Ref: SM 4500-CL E-2011		Revision:		Date: 2011	
1940	TOTA	L RESIDUAL CHLORINE	12/01/2019	11/30/2024	Ν	NMI	NE
Method Code: 20085	5216	Method Ref: SM 4500-CL C-2011		Revision:		Date: 2011	
1575	CHLO	RIDE	12/01/2019	11/30/2024	Ν	NMI	NE
Method Code: 20097	/023	Method Ref: SM 4500-CN G		Revision: 23RD ED		Date: 2016	
1510	AME	NABLE CYANIDE	03/23/2021	11/30/2024	Ν	NMI	NE
Method Code: 20099	9814	Method Ref: SM 4500-CN N		Revision: 23RD ED		Date: 2016	
1645	TOTA	L CYANIDE	11/26/2022	11/30/2024	Ν	NMI	NE
Method Code: 20105	5220	Method Ref: SM 4500-H+ B-2011		Revision:		Date: 2011	
1900	PH		12/01/2019	11/30/2024	Ν	NMI	NE
Method Code: 20135	5039	Method Ref: SM 5210 B-2016		Revision:		Date: 2016	
1530	BIOCI	HEMICAL OXYGEN DEMAND (BOD)	03/23/2021	11/30/2024	Ν	NMI	NE
1555	CARB	ONACEOUS BOD (CBOD)	03/23/2021	11/30/2024	Ν	NMI	NE
Method Code: 20137	7637	Method Ref: SM 5310 B-2014		Revision: 23RD ED		Date: 2014	
2040	ΤΟΤΑ	L ORGANIC CARBON (TOC)	03/23/2021	11/30/2024	Ν	NMI	NE

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST

ANALYTE LIST NUMBER: 223823-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES

4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

Method Code: 30034	107	Method Ref: ASTM D7781-14		Revision:		Date: 2014	
1810	NITR	ATE AS N	11/20/2023	11/30/2024	Ν	NMI	CN
1820	NITR	ATE PLUS NITRITE AS N	11/26/2022	11/30/2024	Ν	NMI	NE
1840	NITR	ITE AS N	11/20/2023	11/30/2024	Ν	NMI	CN
Method Code: 60031	450	Method Ref: OIA 1677-09		Revision:		Date: 2010	
1523	AVA	ILABLE CYANIDE	03/23/2021	11/30/2024	Ν	NMI	NE
Method Code: 10133	207	Method Ref: SW-846 3005A		Revision: UPDATE I		Date: 1992	
1438	PREC	CONCENTRATION UNDER ACID	12/01/2019	11/30/2024	Ν	PRE	NE
Method Code: 10133	605	Method Ref: SW-846 3010A		Revision: UPDATE I		Date: 1992	
1420	HOT	PLATE ACID DIGESTION (HNO3 + HCL)	12/01/2019	11/30/2024	Ν	PRE	NE
Method Code: 10134	006	Method Ref: SW-846 3015A		Revision: UPDATE I	V	Date: 2007	
1430	MIC	ROWAVE-ASSISTED ACID DIGESTION OF TCLP EXTRACTS	03/23/2021	11/30/2024	Ν	PRE	NH
Method Code: 20095	458	Method Ref: SM 4500-CN C		Revision: 23RD ED		Date: 2016	
1412	CYAI	NIDE, MANUAL DISTILLATION	11/26/2022	11/30/2024	Ν	PRE	NE
Method Code: 10214	207	Method Ref: EPA 1000.0 - FATHEAD MINNOW, 7- DAILY	DAY CHRONIC,	Revision:		Date: 2002	
3470	IC25	(ON) GROWTH	12/01/2019	11/30/2024	Ν	тох	NE
3475	NOE	C (GROWTH)	12/01/2019	11/30/2024	Ν	тох	NE
3465	NOE	C (SURVIVAL)	12/01/2019	11/30/2024	Ν	тох	NE
Method Code: 10253	040	Method Ref: EPA 1002.0 - CERIODAPHNIA DUBIA, CHRONIC,	3-BROOD	Revision:		Date: 2002	
3480	IC25	REPRODUCTION	12/01/2019	11/30/2024	Ν	тох	NE
3465	NOE	C (SURVIVAL)	12/01/2019	11/30/2024	Ν	тох	NE
3485	NOE	C REPRODUCTION	12/01/2019	11/30/2024	Ν	тох	NE
Method Code: 10013	806	Method Ref: EPA 200.7		Revision: 4.4		Date: 1994	
1000	ALUI	MINUM	12/01/2019	11/30/2024	SC	MET	NE
1005	ANT	IMONY	12/01/2019	11/30/2024	SC	MET	NE
1010	ARSE	ENIC	12/01/2019	11/30/2024	SC	MET	NE
1015	BARI	UM	12/01/2019	11/30/2024	SC	MET	NE
1020	BER	/LLIUM	12/01/2019	11/30/2024	SC	MET	NE
1030	CAD	MIUM	12/01/2019	11/30/2024	SC	MET	NE
1035	CALC	CIUM	12/01/2019	11/30/2024	SC	MET	NE
1040	CHR	MIUM	12/01/2019	11/30/2024	SC	MET	NE
1050	COB	ALT	12/01/2019	11/30/2024	SC	MET	NE
1055	COP	PER	12/01/2019	11/30/2024	SC	MET	NE
1070	IRON	I	12/01/2019	11/30/2024	SC	MET	NE
1075	LEAD)	12/01/2019	11/30/2024	SC	MET	NE
1085	MAG	SNESIUM	12/01/2019	11/30/2024	SC	MET	NE

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST

ANALYTE LIST NUMBER: 223823-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES

4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

1090	MAN	GANESE	12/01/2019	11/30/2024	SC	MET	NE
1100	MOL	YBDENUM	12/01/2019	11/30/2024	SC	MET	NE
1105	NICKI	EL	12/01/2019	11/30/2024	SC	MET	NE
1125	ΡΟΤΑ	SSIUM	12/01/2019	11/30/2024	SC	MET	NE
1140	SELEN	NUM	12/01/2019	11/30/2024	SC	MET	NE
1150	SILVE	R	12/01/2019	11/30/2024	SC	MET	NE
1155	SODI	UM	12/01/2019	11/30/2024	SC	MET	NE
1160	STRO	NTIUM	12/01/2019	11/30/2024	SC	MET	NE
1165	THAL	LIUM	12/01/2019	11/30/2024	SC	MET	NE
1175	TIN		12/01/2019	11/30/2024	SC	MET	NE
1180	TITAN	NIUM	12/01/2019	11/30/2024	SC	MET	NE
1185	VANA	ADIUM	12/01/2019	11/30/2024	SC	MET	NE
1190	ZINC		12/01/2019	11/30/2024	SC	MET	NE
Method Code: 10	0036609	Method Ref: EPA 245.1		Revision: 3		Date: 1994	
1095	MERO	CURY	12/01/2019	11/30/2024	SC	MET	NE
Method Code: 10	0063602	Method Ref: EPA 350.1		Revision: 2		Date: 1993	
1515	AMM	IONIA AS N	12/01/2019	11/30/2024	SC	NMI	NE
Method Code: 10	0065404	Method Ref: EPA 351.2		Revision: 2		Date: 1993	
1795	TOTA	L KJELDAHL NITROGEN (TKN)	12/01/2019	11/30/2024	SC	NMI	NE
Method Code: 10	0070005	Method Ref: EPA 365.1		Revision: 2		Date: 1993	
1910	TOTA	L PHOSPHORUS	12/01/2019	11/30/2024	SC	NMI	NE
Method Code: 10	0198455	Method Ref: SW-846 9045D		Revision: UPDAT	E IIIB	Date: 2004	
1900	PH		03/23/2021	11/30/2024	SC	NMI	NE
Method Code: 20	0005270	Method Ref: SM 2540 G-2011		Revision:		Date: 2011	
1947	RESID	DUE - FIXED	12/01/2019	11/30/2024	SC	NMI	NE
1950	RESID	DUE-TOTAL (TS)	12/01/2019	11/30/2024	SC	NMI	NE
1970	RESID	DUE-VOLATILE	12/01/2019	11/30/2024	SC	NMI	NE
Method Code: N	H0344	Method Ref: NEORSD SOP 2037-06		Revision: 6		Date:	
1645	TOTA	L CYANIDE	12/07/2021	11/30/2024	SC	NMI	NE
Method Code: 10	0136002	Method Ref: SW-846 3051A		Revision: UPDAT	E IV	Date: 2007	
1426	MICR	OWAVE DIGESTION OF SOLIDS	03/23/2021	11/30/2024	SC	PRE	NE

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST

ANALYTE LIST NUMBER: 223823-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES

4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

Bill Hall NH ELAP Program Manager Issue Date: 11/20/2023

Matrix Legend: AE=Air; BT=Tissue; D=Drinking Water; N=Non-Potable Water; SC=Solid and Chemical Materials

Category Legend: MIC=Microbiology; MET=Metals; NMI=Non-Metal Inorganics; PRE=Preparation; VOC=Volatile Organic Compounds; SBN=SVOC-BNA; SHE=SVOC-Herbicides; SNO=SVOC-NOS; SPC=SVOC-PCB; SPE=SVOC-Peticides; RAD=Radiochemistry; WET=Wet, PFC=Perfluorinated compound

Accreditation Legend: NE=NELAP; NH=NH State Certification; CE=State Certification; IN=Interim (NELAP); WI=Withdrawn; AP=Applied; RE=Revoked; SU=Suspended

Appendix F. Acknowledgment Letters

February 29, 2024

Mr. Seth Hothem Supervisor of Environmental Assessment Northeast Ohio Regional Sewer District 4747 East 49th Street Cuyahoga Heights, OH 44125

Dear Mr. Hothem:

This letter is to acknowledge that I am responsible for assisting the Northeast Ohio Regional Sewer District's Water Quality and Industrial Surveillance Division in conducting chemical water quality assessments for the 2024 Cuyahoga River and Northern Tributaries Environmental Monitoring, East Side Tributaries Environmental Monitoring, Stream Restoration Projects Environmental Monitoring, the Lake Erie Beach Monitoring and Lake Erie Nutrient Study.

It is understood that an Ohio Environmental Protection Agency Level 3 Qualified Data Collector (QDC) Certification for Chemical Water Quality Assessment is required to perform these tasks and that I am responsible for maintained my Level 3 QDC Certification during the term of these Study Plans.

In addition, I have not been convicted nor pleaded guilty to a Violation of Section 2911.21 of the Revised Code (criminal Trespass) or a substantially similar municipal ordinance within the previous five years.

Sincerely,

serp Hierop

Kelsey Hickox QDC Number: 01091 Stormwater Inspector III Northeast Ohio Regional Sewer District 4747 East 49th Street Cuyahoga Heights, OH 44125

February 29, 2024

Mr. Seth Hothem Supervisor of Environmental Assessment Northeast Ohio Regional Sewer District 4747 East 49th Street Cuyahoga Heights, OH 44125

Dear Mr. Hothem:

This letter is to acknowledge that I am responsible for assisting the Northeast Ohio Regional Sewer District's Water Quality and Industrial Surveillance Division in conducting chemical water quality assessments for the 2024 Cuyahoga River and Northern Tributaries Environmental Monitoring, East Side Tributaries Environmental Monitoring, Stream Restoration Projects Environmental Monitoring, the Lake Erie Beach Monitoring and Lake Erie Nutrient Study.

It is understood that an Ohio Environmental Protection Agency Level 3 Qualified Data Collector (QDC) Certification for Chemical Water Quality Assessment is required to perform these tasks and that I am responsible for maintained my Level 3 QDC Certification during the term of these Study Plans.

In addition, I have not been convicted nor pleaded guilty to a Violation of Section 2911.21 of the Revised Code (criminal Trespass) or a substantially similar municipal ordinance within the previous five years.

Sincerely,

Fri 7Mi

Francisco J. Rivera QDC Number: 00262 Watershed Team Leader Northeast Ohio Regional Sewer District 3900 Euclid Avenue Cleveland, OH 44115 Appendix G. Wild Animal Collector's Permit

To be submitted once received from ODNR

Appendix H. References

References

- Biohabitats (2020). *City of Brooklyn: Stickney Creek Stream Stabilization and Floodplain Restoration.* Biohabitats.
- Chlorophyll a Sampling and Field Filtering Standard Operating Procedure (SOP-EA001-00)
- EPA New England- Region 1 (2005). Standard operating procedure for calibration and field measurement procedures for the YSI Model 6-Series Sondes and Data Logger (Including: temperature, pH, specific conductance, turbidity, dissolved oxygen, chlorophyll, rhodamine WT, ORP, and barometric pressure) (7th Revision). North Chelmsford, MA: The Office of Environmental Measurement and Evaluation, Ecosystem Assessment- Ecology Monitoring Team.
- Ohio Environmental Protection Agency (1987a). Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters (Updated January 1988; September 1989; November 2006; August 2008; May 2015). Columbus, OH: Division of Water Quality Monitoring and Assessment.
- Ohio Environmental Protection Agency (1987b). Biological criteria for the protection of aquatic life: Volume III. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities (Updated September 1989; March 2001; November 2006; August 2008; June 2015). Columbus, OH: Division of Water Quality Monitoring and Assessment.
- Ohio Environmental Protection Agency (1997). Biological Criteria for the Protection of Aquatic Life: Volume IV: Fish and Macroinvertebrate Indices for Ohio's Lake Erie Nearshore Waters, Harbors, and Lacustuaries. Columbus, OH: Division of Surface Water, Ecological Assessment Unit.
- Ohio Environmental Protection Agency (2006). Methods for assessing habitat in flowing waters: using the Qualitative Habitat Evaluation Index (QHEI). (Ohio EPA Technical Bulletin EAS/2006-06-1). Columbus, OH: Division of Surface Water; Division of Ecological Assessment Section.
- Ohio Environmental Protection Agency (2010). Methods of Assessing Habitat in Lake Erie Shoreline Waters Using the Qualitative Habitat Evaluation Index (QHEI) Approach (Version 2.1). Columbus, OH: Division of Surface Water.
- Ohio Environmental Protection Agency (2022). Ohio 2022 Integrated Water Quality Monitoring and Assessment Report. Columbus, Ohio: Division of Surface Water.
- Ohio Environmental Protection Agency (2023a). Surface Water Field Sampling Manual for water quality parameters and flow. Columbus, Ohio: Division of Surface Water.
- Ohio Environmental Protection Agency (2023b). State of Ohio Water Quality Standards Ohio Administrative Code Chapter 3745-1. Columbus, OH: Division of Surface Water; Standards and Technical Support Section.