

Level 3 Project Study Plan

2022 Greater Cleveland Area Lake Erie Nutrient Study

Table of Contents

List of	Acronyms
(1)	Objective
(2)	Non-point/Point Sources
(3)	Parameters Covered 4
(4)	Field Collection and Data Assessment Techniques
(5)	Stream Flow Measurements
(6)	Sampling Locations
(7)	Schedule
(8)	QA/QC
(9)	Work Products
(10)	Qualified Data Collectors
(11)	Contract Laboratory
(12)	Scientific Collectors Permit12
(13)	Digital Catalog Statement
(14)	Voucher Specimen Statement12
(15)	Sample Location(s) Statement
(16)	Additional Data Type Signed Statement
(17)	Trespassing Statement
Apper	ndix A. Parameter Information15
Apper	ndix B. Field Form
Apper	ndix C. Meter Specifications
Apper	ndix D. Laboratory Certifications
Apper	ndix E. Laboratory Standard Operating Procedures

List of Acronyms

CSO	Combined Sewer Overflow
DO	Dissolved Oxygen
DRP	Dissolved Reactive Phosphorus
EPA	Environmental Protection Agency
GIS	Geographic Information System
GPS	Global Positioning System
HUC	Hydrologic Unit Code
MPN	Most-Probable Number
NELAC	National Environmental Laboratory Accreditation
	Conference
NEORSD	Northeast Ohio Regional Sewer District
NPDES	National Pollutant Discharge Elimination System
ODH	Ohio Department of Health
PVDF	Polyvinylidene Fluoride
QDC	Qualified Data Collector
qPCR	Quantitative Polymerase Chain Reaction
RM	River Mile
RPD	Relative Percent Difference
SOP	Standard Operating Procedure
USGS	United States Geological Survey
WQIS	Water Quality & Industrial Surveillance
WWTC	Wastewater Treatment Center
WWTP	Wastewater Treatment Plant

(1) Objective

Harmful algal blooms pose a threat to Lake Erie and the cities which surround it. In 2011, an algal bloom, the majority of which consisted of *Microcystis*, spread east of Cleveland and persisted there until the middle of October. In August 2014, an algal bloom interfered with the drinking water in Toledo, Ohio. The increase in algae throughout the lake may be attributed to increases in bioavailable phosphorus which includes dissolved reactive phosphorus (US EPA, 2015) coupled with favorable weather conditions. The algae bloom in 2015 was the largest in this century according to the National Oceanic and Atmospheric Academy (NOAA, 2015). Northeast Ohio Regional Sewer District (NEORSD) facilities, including wastewater treatment plants and the combined sewer overflows (CSOs), are a source of nutrients to the lake. The extent to which these potential sources, along with other sources within the study area, are contributing to the problem is not well known.

The purpose of this study is to monitor the levels of nutrients, algae, and *Microcystis* and its associated toxins, in Lake Erie and its tributaries near the greater Cleveland area from April through October. Protecting public health is also important and this study will attempt to monitor harmful algal blooms if they do occur, in conjunction with NEORSD's 2022 Beach Monitoring Study. In addition to this, the study attempts to establish temporal and spatial trends among these parameters, and potentially relate them to levels of precipitation. Chlorophyll *a* will be measured as a means of determining the total quantity of algae present. Nutrient analyses will include several forms of both phosphorus and nitrogen in the Lake and tributaries. Other water quality parameters that may also influence algal production will also be measured (Section 3).

Table 1. Potential Sources of Pollution				
Point Sources	Nonpoint Sources			
Easterly WWTP	Urban Runoff			
Westerly WWTC	Spills			
NEORSD-owned CSOs	Agricultural runoff			
Cuyahoga River				
Rocky River				
Euclid Creek				
9-Mile Creek				
Dugway Brook				
Doan Brook				
Shaw Brook				
Green Creek				

(2) Non-point/Point Sources

A map has been provided in Section 6 (Figure 1) to show point sources that may be influencing the water quality at each sample location. These sources, along with the ones listed in the table above, may be impacting nutrient and algal levels within Lake Erie.

(3) Parameters Covered

Water chemistry samples will be collected at each site and analyzed by NEORSD's Analytical Services. Chemical and physical water quality parameters to be measured in conjunction with water column chlorophyll *a* samples and *Microcystis* sampling include total phosphorus, dissolved reactive phosphorus (DRP), nitrate+nitrite, ammonia, alkalinity, turbidity and suspended solids. Appendix A lists the parameters to be tested, along with the detection limits and practical quantitation limits. Field measurements for dissolved oxygen (DO), pH, temperature, conductivity, specific conductance and turbidity will also be performed. Observations such as water color, clarity, odor and surface coating, lake surface conditions, and weather conditions will be recorded on a field sheet or in electronic format using an Apple iPad equipped with GIS data entry software. A *Lake Sampling Field Data Form* will be completed at each site during each sampling event (Appendix B).

(4) Field Collection and Data Assessment Techniques

Techniques used for water chemistry sampling and chemical analyses will follow the Ohio EPA Surface Water Field Sampling Manual (2021a). These techniques will be used for the lake sites and the four river sites. Chemical water quality samples from each site will be collected with one 4-liter disposable polyethylene cubitainer with disposable polypropylene lids and two 473-mL plastic bottles. An additional sample to be analyzed for DRP will be filtered in the field using a 0.45-µm PVDF syringe filter and put into a 125mL plastic bottle. All water quality samples will be collected as grab samples at a depth of six to twelve inches below the water surface. Additional samples may be collected at different depths using a Kemmerer water sampler. Field replicate/duplicate samples and field blanks will be collected at randomly selected sites at a frequency of not less than 5% of the total samples collected for this study plan. The acceptable relative percent difference (RPD) for field replicate/duplicate samples will be less than or equal to $[(0.9465x^{-0.344})*100]+5$, where x = sample result/detection limit; results above this range will be rejected. Acid preservation of the samples, as specified in the NEORSD laboratory's standard operating procedure for each parameter, will also occur in the field. Field analyses include the use of an YSI EXO1 sonde, YSI EXO2 sonde, or YSI 600XL sonde to measure dissolved oxygen (DO), water temperature, conductivity, and pH; and when necessary, a Hanna HI 98129 meter to measure water temperature, specific conductance and pH, and a Hach HQ30d meter with LDO101 probe to measure DO. Turbidity will be measured using either a Hach 2100P IS Portable Turbidimeter or a Hach 2100Q Portable Turbidimeter. Specifications for these meters have been included in Appendix C.

Water column chlorophyll *a* samples will be collected during each sampling event using a 1-liter glass amber-colored jar. All chlorophyll *a* samples will be collected as grab samples at a depth of six to twelve inches below the water surface. Additional samples may be collected at different depths using a Kemmerer water sampler. One replicate or duplicate chlorophyll *a* sample will be collected at randomly selected sites at a frequency of not less than 5% of the total samples collected for this study plan. After returning to the NEORSD Environmental and Maintenance Services Center, each sample will be filtered in triplicate using 47 mm glass fiber filters and a vacuum with a pressure not exceeding 6 in. Hg. Filtered samples will be stored in a freezer at -37° C for storage prior to analysis.

Samples may be collected for cyanotoxin analysis and cyanobacteria identification if an algal bloom is visible. The screening procedure is to analyze the sample by qPCR to determine if the toxin producing gene is present. Based on the results of the qPCR analysis, the laboratory will determine the appropriate analysis for toxin quantification: EPA 544, EPA 545, EPA 546, or any other testing necessary. Specifications for these analyses and sampling methods are included in Table 2 below.

Filtering for DRP will be done at the time of collection using a 0.45-µm PVDF syringe filter and transferred to a 125-mL plastic bottle. Water chemistry parameters pertaining to the lake sampling and water conditions will be recorded using the NEORSD's *Lake Sampling Field Data Form* (refer to Appendix B for an example form) or recorded in electronic format using an Apple iPad equipped with GIS data entry software. In the case of electronic data submission, daily field sheets may still be electronically generated upon request.

Data from total phosphorus and DRP samples collected at the wastewater treatment plant effluents may also be used in the findings of the study. These samples are a requirement of the NPDES permits and are collected separately from this study.

Table 2. Microcystin Analyses and Descriptions					
	Microscope ID	EPA 545 for	EPA 544 for	EPA 546 ELISA	
	and	Cylindrosperm	Microcystins		
	Enumeration	opsin and	and Nodularin		
		Anatoxin-A by	by LC/MS/MS2		
		LC/MS/MS1			
Container	1 liter amber	100-mL amber	100-mL amber	1 liter glass container	
	glass	glass vials with	glass bottles		
		PTFE caps	with PTFE caps		
Preservati	Lugol's Solution	Sodium	Trizma = 7.75	None	
on	(done in the lab)	bisulfate = 1g/L	g/L 2-		
		Ascorbic Acid =	Chloroacetamid		
		0.10 g/L	e = 2 g/L		
			Ascorbic Acid =		
			100 mg/L EDTA		
			= 0.35 g/L		
Collection	Grab sample	Grab sample 6-	Grab sample 6-	Take sample at location where	
	from densest	12 inches	12 inches	unusual phenomena have been	
	part of the	beneath surface	beneath surface	observed.	
	bloom			Composite of 3 samples	
				depending on bloom depth.	
Storage	Ambient field	$< 6^{\circ}$ C and	< 6° C (do not	Refrigerate for up to 5 days,	
	temperature, <	protected from	freeze)	freeze for storage longer than 5	
	6°C and	light (do not		days; protect from light	
	protected from	freeze)			
	light				
Hold Time	24 hours	28 days	28 days	14 days	
Volume	10 uL	1 mL	500 mL or entire	50 uL	
needed for			sample		
analysis					
Special	Preservation to	Preservatives	Preservatives (as	None	
Notes	be added in lab.	(as solids)	solids) added to		
		added to each	each sample		
		sample	container prior		
		container prior	to use in the		
		to use in the	field. Sample		
		field. Sample	must be chilled <		
		must be chilled	10° C during		
		< 10° C during	shipment.		
		shipment.			

2022 Greater Cleveland Area Lake Erie Nutrient Study March 11, 2022

(5) Stream Flow Measurements

Not applicable.

(6) Sampling Locations

The following sample locations will be surveyed during the 2022 field season (Table 3 and Figure 1):

Water Body	Latitude	Longitude	Station ID	Location Information	USGS HUC 8 Number - Name	Purpose
	41.49720	-81.86200	RR1B	Near Rocky River		
	41.59630	-81.80000	BRD17D	About 7 miles off shore of Lakewood		
	41.52080	-81.80000	BRD17I	Near Lakewood		
	41.54800	-81.76400	CW82	Near Garrett Morgan Water Intake		Determine trends in algal densities and nutrient concentrations in Lake Erie.
Lake Erie	41.50765	-81.72907	WTP1	Near Westerly WWTC Diffusers	04120200- Lake Erie	
	41.52500	-81.71170	CW88	Outside the City of Cleveland's Breakwall		
	41.54500	54500 -81.67500	CE92	Outside the City of Cleveland's Breakwall		
	41.60333	-81.59717	CE100	2 miles north of Easterly WWTP outfall		
Rocky River	41.4802	-81.8327	RM 0.90	Upstream of Detroit Avenue	04110002 - Cuyahoga	
Euclid Creek	41.5833	-81.5594	RM 0.55	Downstream of Lake Shore Boulevard	04110003 Ashtabula- Chagrin	Determine the contribution and
Cuyahoga River	41.5008	-81.7098	RM 0.20	Near mouth of river in navigation channel	04110002 - Cuyahoga	effect to receiving waterbody.
Cuyahoga River	41.4182	-81.6479	RM 10.95	Chlorine-access railroad bridge, near ash lagoons	04110002 - Cuyahoga	

Figure 1. Map of Sampling Locations

Greater Cleveland Area Lake Erie Nutrient Study

Legend

This information is for display purposes only. The Northeast Ohio Regional Sewer District (NEORSD) makes no warranties, expressed or implied, with respect to the accuracy of and the use of this map for any specific purpose. This map was created to serve as base information for use in Geographic Information Systems (GIS) for a variety of planning and analysis purposes. The NEORSD expressly disclaims any liability that may result from the use of this map. For more information, please contact: NEORSD GIS Services, 3900 Euclid Avenue, Cleveland, Ohio 44115 ----(216) 881-6600----GIS@neorsd.org

(7) Schedule

Water chemistry sampling will be attempted at least once per month in May through October of 2022 if weather permits. Sampling may also take place after significant rain events if time and field conditions permit. More frequent sampling may be conducted if deemed necessary based upon the extent of any algal blooms. Sampling may also occur in April if weather permits. Specific dates have not been chosen and will be dependent upon weather and lake conditions.

(8) QA/QC

Water samples obtained for chemical analyses on the boat will be preserved [see section (4)], labeled and then placed on ice in a cooler on the boat until all samples are collected. The sample cooler will then be transferred to the field truck upon returning to shore. The field truck will remain locked at all times when not occupied/visible. The water samples collected on land will be preserved, labeled, and placed directly into the cooler in the field truck, which will be locked at all times. Sampling activities, including sample time and condition of surface water sampled, will be entered in a field logbook and on the *Lake Sampling Field Data Form* (Appendix B) by hand or using the Apple iPad. The samples will then be delivered immediately to the NEORSD Analytical Services cooler and the samples will be transferred to the custody of Analytical Services. The NEORSD Analytical Services Quality Manual and associated Standard Operating Procedures are on file with Ohio EPA. The Quality Assurance Officer at Analytical Services will send updates, revisions, and any information on document control to Ohio EPA as needed.

For chlorophyll *a* sampling, three filtrations will be performed for each sample. A field filtration blank will be submitted for every 20 samples.

(9) Work Products

Within one year of completion of the project, water chemistry results will be submitted to the Ohio EPA. Additionally, reports summarizing, interpreting, graphically presenting and discussing the chlorophyll *a* results and any excursions from water quality standards (Ohio EPA, 2021b) may be prepared for internal use.

(10) Qualified Data Collectors

Name	Address	Email Address	Phone Number	QDC Specialty(s)
Hannah Boesinger	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	boesingerh@neorsd.org	216-641- 6000	QDC - 01374 CWQA
Seth Hothem ¹	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	hothems@neorsd.org	216-641- 6000	QDC - 00010 CWQA
Jill Knittle	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	knittlej@neorsd.org	216-641- 6000	QDC - 00512 CWQA
Ron Maichle	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	maichler@neorsd.org	216-641- 6000	QDC - 00145 CWQA
Mark Matteson	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	mattesonm@neorsd.org	216-641- 6000	QDC - 01020 CWQA
Denise Phillips	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	phillipsd@neorsd.org	216-641- 6000	QDC – 01203 CWQA
John Rhoades	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	rhoadesj@neorsd.org	216-641- 6000	QDC – 00008 CWQA
Francisco Rivera	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	riveraf@neorsd.org	216-641- 6000	QDC - 00262 CWQA
Eric Soehnlen	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	soehnlene@neorsd.org	216-641- 6000	QDC - 01030 CWQA
Justin Telep	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	telepj@neorsd.org	216-641- 6000	QDC - 01304 CWQA
¹ Lead Project	Manager			

The following Level 3 Qualified Data Collectors (QDC) will be involved with this study:

The following is a list of persons not qualified as level 3 QDCs who may be involved in the project. Prior to the start of sampling, the project managers will explain to each individual the proper methods for sampling. Sampling will only be completed under the direct observation of a QDC. The lead project manager will be responsible for reviewing all reports and data analysis prepared by qualified personnel prior to completion.

Name	Address	Email Address	Phone Number
Lindsay Baker	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	bakerl@neorsd.org	216-641- 6000
Brittany Dalton	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	daltonb@neorsd.org	216-641- 6000
Rae Grant	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	grantr@neorsd.org	216-641- 6000
Matthew Johnson	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	johnsonmatthew@neorsd.org	216-641- 6000
Jeff Harrison	4747 East 49 th Street arrison Cuyahoga Hts., Ohio harrisonj@neorsd.org 44125		216-641- 6000
Veronica Riedel	eronica Riedel 4747 East 49 th Street Cuyahoga Hts., Ohio riedelv@neorsd.org 44125		216-641- 6000
Shawn Robinson	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	robinsons@neorsd.org	216-641- 6000
Frank Schuschu	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	schuschuf@neorsd.org	216-641- 6000
Wolfram von Kiparski	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	vonkiparskiw@neorsd.org	216-641- 6000
Theresa Walsh	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	t 49 th Street a Hts., Ohio walsht@neorsd.org 4125	
Paraprofessional Intern (TBD)	4747 East 49th Street Cuyahoga Hts., Ohio 44125	@neorsd.org	216-641- 6000
Paraprofessional Intern (TBD)	4747 East 49th Street Cuyahoga Hts., Ohio 44125	@neorsd.org	216-641- 6000

2022 Greater Cleveland Area Lake Erie Nutrient Study March 11, 2022

Name	Address	Email Address	Phone Number
Paraprofessional Intern (TBD)	4747 East 49th Street Cuyahoga Hts., Ohio 44125	@neorsd.org	216-641- 6000

(11) Contract Laboratory

All chemical sample analysis will be completed by NEORSD's Analytical Services Division. Evidence of NEORSD's Analytical Services current accreditation and method dates can be found in Appendix D. The contact information for NEORSD's Analytical Service Division is:

NEORSD Analytical Services Cheryl Soltis-Muth 4747 E. 49th Street Cuyahoga Heights, Ohio 44056 <u>soltis-muthc@neorsd.org</u> 216-641-6000

(12) Scientific Collectors Permit Not applicable

(13) Digital Catalog Statement

A digital photo catalog of all sampling locations will be maintained for 10 years and will include photos of the specific sampling location(s), and, for those sites close to shore, the general land use in the immediate vicinity of the sampling location(s).

Print/Signature:	Seth Hothem / Stree Muss	Date: 3/11/22	2
Finity Signature:	Setti Hothem / Sec - Mu -	Date:	511162

(14) Voucher Specimen Statement

Not applicable

(15) Sample Location(s) Statement

I attest that I will make available any and all sampling location information, including but not limited to; the name of the water body sampled, sampling location latitude and 2022 Greater Cleveland Area Lake Erie Nutrient Study March 11, 2022

longitude, sampling location, station ID, general location information, the U.S. geological survey HUC 8 number and name, and the purpose for data collection at each sampling location.

Print/Signature:	Seth Hothem /	Son Hor	Date:	3/11/22	
				and the second se	

(16) Additional Data Type Signed Statement

The Lead Project Manager for all NEORSD project study plans is approved for all project data types.

Print/Signature:	Seth Hothem /	Son stor	Date:	3/11/22

(17) Trespassing Statement

I have not been convicted or pleaded guilty to a Violation of section 2911.21 of the Revised Code (criminal trespass) or a substantially similar municipal ordinance within the previous five years.

Print/Signature:	Hannah Boesinger / Hannah Boldger	Date:	3/11/22
Print/Signature:	Seth Hothem/ gon Nota	Date:	3/11/22
Print/Signature:	Jill Knittle / Jun Kuice	Date:	3/11/22
Print/Signature:	Ron Maichle / JC. March	Date:	55-11-22
Print/Signature:	Mark Matteson / Perfection	Date:	3/11/22
Print/Signature:	Denise Phillips / Denice Paulo	Date:	3/11/23
Print/Signature:	John Rhoades / Alutt	Date:	03/11/22
Print/Signature:	Francisco Riveral 5272	Date:	3/11/22
Print/Signature:	Eric Soehnlen / Ch	Date:	3/11/22
Print/Signature:	Justin Telep/	Date:	3/11/72

References

- National Oceanic and Atmospheric Academy. (2015). Bulletin 27: Experimental Lake Erie Harmful Algal Bloom Bulletin. Ann Arbor, MI: National Centers for Coastal Ocean Science and Great Lakes Environmental Research Laboratory, NOAA-GLERL.
- Ohio Environmental Protection Agency. (2021a). Surface Water Field Sampling Manual for water quality parameters and flow. Columbus, Ohio: Division of Surface Water.
- Ohio Environmental Protection Agency. (2021b). State of Ohio Water Quality Standards Ohio Administrative Code Chapter 3745-1 (Revision: January 21, 2021). Columbus, OH: Division of Surface Water; Standards and Technical Support Section.
- US Environmental Protection Agency. (2015). *Recommended Phosphorus Loading Targets for Lake Erie*. US EPA, Annex 4 Objectives and Targets Task Team. Accessed: 22 February 2016. URL: http://www.epa.gov/sites/production/files/2015-06/documents/report-recommended-phosphorus-loading-targets-lake-erie-201505.pdf.

Appendix A	٩.	Parameter	Information
, appendix ,	•••	rurumeter	mormation

Deremeter	Additional Name	Test	Method Detection	Practical Quantitation
Parameter			Limit	Limit
Alkalinity		EPA 310.2	6.44 mg/L	16 mg/L
Ammonia	NH ₃	EPA 350.1	0.022 mg/L	0.05 mg/L
Nitrite + Nitrate	$NO_2 + NO_3$	N07-003 or EPA 353.2	0.012 mg/L	0.04 mg/L
Dissolved Reactive Phosphorus	DRP	EPA 365.1	0.007 mg/L	0.025 mg/L
Low Level Dissolved Reactive Phoshorus	LLDRP	EPA 365.1	1.62 μg/L	5 μg/L
Total Phosphorus	ТР	EPA 365.1	0.010 mg/L	0.02 mg/L
Chlorophyll a		EPA 445.0	0.334 <u>µ</u> g/L	1.00 μg/L
Total Suspended Solids	TSS	SM 2540 D ¹	0.7 mg/L	0.7 mg/L
Field Parameter	Field Parameter Test		(Value R	eported in)
рН		EPA 150.1	S.U.	
Conductivity		SM 2510A ¹	μs/cm	
Specific Conductance		SM 2510B ¹	μs/cm	
Dissolved Oxygen	DO	SM 4500-0 G ¹	mg/L	
Temperature	Temp	EPA 170.1	°C	
Turbidity *		EPA 180.1	NTU	
* Turbidity will either be completed i	n the field or at the labo	ratory.		
¹ Standard Methods for the Examinat	tion of Water and Waste	water, Method approved by Star	ndard Methods Committee, 19	97. Editorial revisions, 2011.
Note: Additional tests will be done to	analyze for microcystir	n, nodularin, cylindrospermopsir	n, and Anoxin-A.	

*This is subject to change.

Appendix B. Field Form

	NE	ORSD Lake Samp	ling Field Data Form	
Wa	ter Body:	Date:	Collectors:	
Wa	ter Quality Meters Used (Cire)	e): EXO or 600XL,	Letter: Hach meter:	
Tim	e Arrived (hrs):	Time Left (hrs):	Site:	
	Coordinates: Latitude:		Longitude:	
	Weather: Clear Partly Steady Rain C	Cloudy Overcast ther:	Light Rain/Showers Heavy Rain Wind Direction:	
	Lake Surface Condition:	Calm Ripples	Moderate Waves Whitecaps Other:	
	Color: Clear	Muddy Te	a Milky Other:	
	Surface Coating: None	Other:	Odor: Normal Other:	
ä	Depth: Total (m):		Secchi (ft):	
aple	Field Parameters: Conc	luctivity (µmhos/cm)	Sp. Cond. (µmhos/cm):	
San	Disso	lved Oxygen (mg/L):	Dissolved Oxygen (%):	
		Temperature (°C):	pH (s.u.):	
	c	hlorophyll (µg/L):	BGA-PC (µg/L):	
	Turbidity 1 (NTU):	Turbidity 2 (N	NTU): Average (NTU):	
	General Comments:			
Rep	orting sig figs: (Cond and DO	% - 1) (pH, DO mg/L, ar	nd Chlor/BGA-PC - 0.1) (Temp- 0.01)	
Tim	e Arrived (hrs):	Time Left (hrs):	Site:	
	Coordinates: Latitude:		Longitude:	
	Weather: Clear Partly Steady Rain C	Cloudy Overcast ther:	Light Rain/Showers Heavy Rain Wind Direction:	
	Lake Surface Condition:	Calm Ripples	Moderate Waves Whitecaps Other:	
	Color: Clear	Muddy Te	a Milky Other:	
	Surface Coating: None	Other:	Odor: Normal Other:	
ä	Depth: Total (m):		Secchi (ft):	
plcI	Field Parameters: Conc	luctivity (µmhos/cm)	Sp. Cond. (µmhos/cm):	
Sam	Disso	lved Oxygen (mg/L):	Dissolved Oxygen (%):	
		Temperature (°C):	pH (s.u.):	
	C	hlorophyll (µg/L):	BGA-PC (µg/L):	
	Turbidity 1 (NTU):	Turbidity 2 (N	Average (NTU):	
	General Comments:			

Modified March 8, 2022

Appendix C. Meter Specifications

The YSI 600XL and 600XLM

YSI 600XL and 600XLM Sondes

Measure multiple parameters simultaneously

The YSI 600XL and YSI 600XLM compact sondes measure eleven parameters simultaneously:

Temperature Conductivity Specific Conductance Salinity Resistivity TDS pH ORP Depth or Level Rapid Pulse[™] DO (% and mg/L)

Connect with Data Collection Platforms

Either sonde can easily connect to the YSI 6200 DAS (Data Acquisition System), YSI EcoNet[™] or your own data collection platform, via SDI-12 for remote and real-time data acquisition applications.

Economical Logging System

The YSI 600XLM is an economical logging system for long-term, *in situ* monitoring and profiling. It will log all parameters at programmable intervals and store 150,000 readings. At one-hour intervals, the instrument will log data for about 75 days utilizing its own power source. The 600XL can also be utilized in the same manner with user-supplied external power.

- Either sonde fits down 2-inch wells
- Horizontal measurements in very shallow waters
- Stirring-independent Rapid Pulse* dissolved oxygen sensor
- Field-replaceable sensors
- Easily connects to data collection platforms
- Available with detachable cables to measure depth up to 200 feet
- Compatible with YSI 650 Multiparameter Display System
- Use with the YSI 5083 flow cell for groundwater applications

Economical, multiparameter sampling or logging in a compact sonde

Sensor performance verified*

The $6820 \vee 2$ and $6920 \vee 2$ sondes use sensor technology that was verified through the US EPA's Environmental Technology Verification Program (ETV). For information on which sensors were performance-verified, turn this sheet over and look for the ETV logo.

To order, or for more info, contact YSI Environmental.

+1 937 767 7241 800 897 4151 (US) www.ysi.com

YSI Environmental +1 937 767 7241 Fax +1 937 767 9353 environmental@ysi.com

Endeco/YSI +1 508 748 0366 Fax +1 508 748 2543 systems@ysi.com

SonTek/YSI +1 858 546 8327 Fax +1 858 546 8150 inquiry@sontek.com

YSI Gulf Coast +1 225 753 2650 Fax +1 225 753 8669 environmental@ysi.com

YSI Hydrodata (UK) +44 1462 673 581 Fax +44 1462 673 582 europe@ysi.com

YSI Middle East (Bahrain) +973 1753 6222 Fax +973 1753 6333 halsalem@ysi.com

YSI (Hong Kong) Limited +852 2891 8154 Fax +852 2834 0034 hongkong@ysi.com

YSI (China) Limited +86 10 5203 9675 Fax +86 10 5203 9679 heijing@ysi-china.com

YS1 Nanotech (Japan) +81 44 222 0009 Fax +81 44 221 1102 nanotech@ysi.com

ROX and Rapid Pulse are trademarks and FeaWatch, Pure Data for n Healthy Planet and Who's Minding the Planet? are registered trademarks of YSI Incorporated.

© Printed in USA 0107 E55-01

Sensor wild lated with the FUV lagstwere submitted in the FUV programmen the Vol 64002Db $\,$ h internations on the proof rankes deviation are CFM server quality areas resulted latent in the transstructure CFM of the VFM and an elevation and the Voreclaume trans of the PV names are leaved as not might equivalation or conclusions of this product new down is make any replot to english destinations or galaxies and producting the transition of the Volume transition of the Volume transition to the transition transition of the Volume transition of the Volume transition transition and the Volume transition of the Volume transition of

Y S1 incorporated Who's Minding the Planet?

YSI 600XL & 600XLM 5	Sensor Specific	ation
----------------------	-----------------	-------

	Range	Resolution	Accuracy
Dissolved Oxygen % Saturation 6562 Rapid Pulse" Sensor*	0 to 500%	0.1%	0 to 200%: ±2% of reading or 2% air saturation, whichever is greater; 200 to 500%: ±6% of reading
Dissolved Oxygen mg/L 6562 Rapid Pulse''' Sensor*	0 to 50 mg/L	0.Q1 mg/L	0 to 20 mg/L: ± 0.2 mg/L or 2% of reading, whichever is greater; 20 to 50 mg/L: ±6% of reading
Conductivity" 6560 Sensor ⁴ ETV	0 to 100 mS/cm	0.001 to 0.1 mS/cm (range dependent)	±0.5% of reading + 0.001 m\$/tm
Salinity	0 to 70 ppt	0.01 ppt	±1% of reading or 0.1 ppt, whichever is greater
Température 6560 Sensor* ETV	-5 to +50°C	0.01°C	±0.15°C
pH 6561 Sensor [*] ETV	Ø to 14 units	0.01 ünit	±0.2 unit
ORP	-999 to +999 mV	0.1 mV	±20 mV
Depth & Level Medium Shallow Vented Level	0 to 200 ft, 61 m 0 to 30 ft, 9.1 m 0 to 30 ft, 9.1 m	0.001 ft, 0.001 m 0.001 ft, 0.001 m 0.001 ft, 0.001 m	±0,4 fl, ±0.12 m ±0,06 fl, ±0.02 m ±0,01 fl, 0.003 m

Report outputs of specific conductance (conductivity corrected to 25° C), resistivity, and total dissolved solids are
also provided. These values are automatically calculated from conductivity according to algorithms found in Standard
Methods for the Examination of Water and Waterwater (cd 1989).

YSI 600XL	& 600XLA	A Sonde Specifications
Medium	3. 3.2 F 1	Fresh, set or polluted water
Temperature	©perating Storage	-5 to +50°C -10 to +60°C
Communications		RS-232, SDI-12
Software		EcoWatch*
Dimensions 490XL 400XLM	Diameter langth Weight	1.65 in, 4.19 cm 1.65 in, 4.9 cm 16 in, 40.5 cm 21.3 in, 54.1 cm 1.3 lbs, 0.59 kg 1.5 lbs, 0.69 kg
Power Internal (External 600XLM only)	12 V DC 4 AA size alkaline batteries

HI 98129 Combo pH/EC/TDS/Temperature Tester with Low Range EC

Description

The HI 98129 Combo waterproof tester offer high accuracy pH, EC/TDS and temperature measurements in a single tester! No more switching between meters for your routine measurements. The waterproof Combo (it even floats) has a large easy-to-read, dual-level LCD and automatic shut-off. pH and EC/TDS readings are automatically compensated for the effects of temperature (ATC). This technologically advanced tester has a replaceable pH electrode cartridge with an extendable cloth junction as well as an EC/TDS graphite electrode that resists contamination by salts and other substances. This gives these meters a greatly extended life. Your tester no longer needs to be thrown away when the pH sensor is exhausted.

The EC/TDS conversion factor is user selectable as is the temperature compensation coefficient (ß). Fast, efficient, accurate and portable, the Combo pH, EC/TDS and temperature tester brings you all the features you've asked for and more!

Range	pН	0.00 to 14.00 pH	
Range	EC 0 to 3999 µS/cm		
Range	TDS 0 to 2000 ppm		
Range	Temperature	0.0 to 60.0°C / 32 to 140.0°F	
Resolution	pН	0.01 pH	
Resolution	EC	1 µS/cm	
Resolution	TDS	1 ppm	
Resolution	Temperature	0.1°C / 0.1°F	
Accuracy	pН	±0.05 pH	
Accuracy	EC/TDS	±2% F.S.	
Accuracy	Temperature ±0.5°C / ±1°F		
Temperature		pH: automatic; EC/TDS: automatic with ß adjustable	
Compensation		from 0.0 to 2.4% / °C	
Calibration	pН	automatic, 1 or 2 points with 2 sets of memorized	
		buffers	
		(pH 4.01 / 7.01 / 10.01 or 4.01 / 6.86 / 9.18)	
Calibration	EC/TDS	automatic, 1 point	
TDS Conversion Facto	pr	adjustable from 0.45 to 1.00	
pH Electrode		HI 73127 (replaceable; included)	
Environment		0 to 50°C (32 to 122°F); RH max 100%	
Battery Type / Life		4 x 1.5V / approx. 100 hours of continuous use;	
		auto-off after 8 minutes of non-use	
Dimensions		163 x 40 x 26 mm (6.4 x 1.6 x 1.0")	
Weight		100 g (3.5 oz.)	

Specifications

HQ30d Portable pH, Conductivity, Dissolved Oxygen (DO), ORP, and ... http://www.hach.com/hq30d-portable-ph-conductivity-dissolved-oxyg...

(HACH) HQ30d Portable pH, Conductivity, Dissolved Oxygen (DO), ORP, and ISE Multi-Parameter Meter Product # HQ30D53000000 Quantity USD Price: \$700.00 ***** 5/5 1 Read 1 minlow White a review Follow this product Portable meter measures critical water quality parameters - without the need for multiple Eingle lingt sharnel for lexible measurement of pH. Censativery Dissolved Orygen (DO), BOD, ORP Ammonia, Ammonium, Fixeride Childride, Sodium, and temperature, any intelliCAL TH smart probe Intuitive user interface for simple operation and accurate results Guided automium and check standard rowlene reduce cationation errors. Stabilizat on siens and visual moasurement lock Guided calibration and check standard routines reduce calibrati ensure that you can trust the accuracy of the results Trust your measurements - IntelIICAL[™] same probes store all calibrations in the probe Calibration history allows quick and easy drange out of probes without needlating. The HOM[™] small system months settial members current satisfiestion dots, user ID, sample ID time, and dots extensionity in the data log ar complete GLP investelling. Designed for demanding conditions Rugged waterproof (IP67) meter provides worry-tree, reliable operation in lab or field environments Convenient kit includes everything you need to start testing Mean kit includes 4 AA batteries quick-start guide, user manual and documentation CD Specifications AC and USB Operation optional Automatic Buffer Recognition UPAC 1 479 4 005 7 000, 19 012, 12 45 DIN 1 09 4 65, 9323 User-defined custam buffer sets Baromatric Preasure Measurement For externatic compensation of DO when using an LDO or LBOD probe Battery Requirements 4.44 Benchtop with stand BOD5/CBOD resolution Available when used with Hach WIMS BOD Manager software Cable resistance correction Digital - not reeded Calibration curves display Calibration summary data logged and displayed Calibration Intervals/Alerts/Raminder 2 hours to 7 days Compliance CE WEEE Conductivity Accuracy 1 0 5 % from (1µS/cm - 200 mS/cm) Conductivity measurement 5 different stability modes Conductivity Measurement Range 0 01 µS/cm to 200 mS/cm 0 01 µS/cm with 2 digits Conductivity resolution Custom Calibration Standards User-defined standard sets Download via USB connection to PC or flash stick Automatically transfer entire data log or as readings are taken Data Export. Data Memory 500 results Digital (intelligent) electrode inputs 2 Dimensions (H x W x D) 7 8 in x 3 7 in x 1 4 in (197 mm x 95 mm x 36 mm) Display readings from one or two probes Bimultureous readings from two probes (4) Pd (Display Display Lock Function Continuous measurement or press to read mode available with averaging function for LDO measurement. ancasm in LOD measurement. 240 ± 160 pice (Dicklay readings from one or two probes pH, pH, mV, temparature Conductivity Conductivity, TDS salindy realizitivity temperature LDD disactived cargers, pressure, temperature ORP/Redox mV, temperature Sodium: Sodium, mV, temperature Display Type DO Measurement Range 0 01 to 20 mo/L (0 to 200%) DO Resolution 0 01 mg/L Fixed Buffer Selecton (UPAC standards (DIN 19265) or Technical buffor (D.N 19257) or 4-7-10 series or user M12 digital 1) for intelliCAL probes Inputs Interface Languages 13** Internal Data Storage 500 IP Rating IP67 Languages: English, French, German, Italian Spanish, Danish Dutch Pollah Portuguese Turkish, Sweedish Czech, Russian mV Accuracy ±01mV mV Measurement at Stable Reading 5 (auto) stabilization settings mV Resolution 8.1 mV Operating Error Messages Text messages displayed Operating Humidity 90 % relative humility (non-condensing Operating Interface Keyped Operating Temperature 5 to 45 °C ORP Electrod - Calibration Predefined ORP standards (including Zobell's staution) Outputs USB to PC / Bash stick PC Data Transfer Software Included pH Measurement at stable reading 5 stabilization settings Printer Optional accessory Salinity Resolution 0 01 ppl Warranty 3 years Water Resistance Meter Cecing 1 meter submersion for 30 minutes (iP67) Weight. 0 74 lbs (0 335 kg)

2100P and 2100P IS Portable Turbidimeter

Features and Benefits

Laboratory Quality in a Portable Unit

The Hach 2100P and 2100P IS Portable Turbidimeters offer a level of performance previously possible only with laboratory instruments. Microprocessor-controlled operation and Hach's unique Ratio[™] optics bring great accuracy, sensitivity, and reliability to field and in-plant testing.

Two Models for Specific Requirements

- 2100P Turbidimeter—Get fast, accurate turbidity testing in the field or the lab, over a wide range of samples. Compliant with USEPA Method 180.1 design criteria.
- 2100P IS Turbidimeter—Designed to meet international standards that mandate measurement using an LED light source.

Two-detector Optical System

The two-detector optical system compensates for color in the sample, light fluctuation, and stray light, enabling analysts to achieve laboratory-grade performance on a wide range of samples, even under difficult, onsite conditions.

The Hach 2100P and 2100P IS Portable Turbidimeters bring laboratory-level performance on-site, offering fast, accurate results and the ease-of-use analysts demand in the field. With a measurement range of 0 to 1000 NTU and a resolution of 0.01 NTU, the 2100P turbidimeter is ideal for regulatory monitoring, process control or field studies.

Specifications*

	2100P	2100P IS	
Measurement Method	Nephelometric Ratio	., I	
Regulatory	Meets EPA Method 180.1	Meets EN ISO 7027	
Light Source	Tungsten lamp	Light-emitting diode (LED) @ 860 nm	
Range			
Automatic Range Mode	0 to 1000 NTU	0 to 1000 FNU	
Manual Range Selection	0 to 9.99, 0 to 99.9 and 0 to 1000 NTU	0 to 9.99, 0 to 99.9 and 0 to 1000 FNU	
Accuracy	±2% of reading plus stray light		
Repeatability	±1% of reading, or 0.01 NTU, whichever is greater	±1% of reading, or 0.01 FNU, whichever is greater	
Resolution	0.01 on lowest range		
Signal Averaging	Selectable on/off		
Power Requirement	4 AA alkaline batteries or optional battery eliminator		
Battery Life, Typical	300 tests with signal average mode off		
	180 tests with signal average mode on		
Operating Temperature	0 to 50°C (32 to 122°F)		
Sample Required	15 mL (0.5 oz.)		
Sample Cells	60 x 25 mm (2.36 x 1 in.) borosilicate glass with screw caps		
Dimensions	22.2 x 9.5 x 7.9 cm (8.75 x 3.75 x 3.12 in.)		
Weight	0.5 kg (1.1 lb.); shipping weight 2.7 kg (6 lb.)		
Warranty	2 years		

*Specifications subject to change without notice.

DW = drinking water WW = wastewater municipal PW = pure water / power IW = industrial water E = environmental C = collections FB = food and beverage

2100Q and 2100Q is Portable Turbidimeter

The Hach 2100Q and 2100Q is Portable Turbidimeters offer unsurpassed ease of use and accuracy in turbidity measurement. Only Hach offers this unique combination of advanced features, such as assisted calibration and simplified data transfer, and measurement innovation, giving you accurate results every time.

urbidimetry

Features and Benefits

Easy Calibration and Verification

Hach 2100Q and 2100Q *is* Portable Turbidimeters provide confidence your measurements are right every time. On-screen assisted calibration and verification save you time and ensure accuracy. With an easy-to-follow interface, complicated manuals are not needed to perform routine calibrations. Single-standard RapidCal[™] calibration offers a simplified solution for low level measurements.

Simple Data Transfer

Data transfer with the optional USB + Power Module is simple, flexible, and doesn't require additional software. All data can be transferred to the module and easily downloaded to your computer with a USB connection, providing superior data integrity and availability. With two different module options, you can customize connectivity and power to meet your unique needs.

Accurate for Rapidly Settling Samples

The Hach 2100Q Portable Turbidimeter incorporates an innovative Rapidly Settling Turbidity[™] mode to provide accurate, repeatable measurements for difficult to measure, rapidly settling samples. An exclusive algorithm that

calculates turbidity based on a series of automatic readings eliminates redundant measurements and estimating.

Convenient Data Logging

0

Up to 500 measurements are automatically stored in the instrument for easy access and backup. Stored information includes: date and time, operator ID, reading mode, sample ID, sample number, units, calibration time, calibration status, error messages and the result.

Optical System for Precision in the Fleld

The two-detector optical system compensates for color in the sample, light fluctuation, and stray light, enabling analysts to achieve laboratory-grade performance on a wide range of samples, even under difficult site conditions.

Two Models for Specific Requirements

- 2100Q Turbidimeter—Compliant with USEPA Method 180.1 design criteria.
- 2100Q is Turbidimeter—Compliant with ISO 7027 design criteria.

Specifications*

Measurement Method

Ratio turbidimetric determination using a primary nephelometric light scatter signal (90°) to the transmitted light scatter signal.

Regulatory 2100Q: Meets EPA Method 180.1 2100Q is: Meets ISO 7027

Light Source 2100Q: Tungsten filament lamp 2100Q is: Light-emitting diode (LED) @ 860 nm

Range 0 to 1000 NTU (FNU)

Accuracy ±2% of reading plus stray light from 0 to 1000 NTU

Repeatability $\pm 1\%$ of reading, or 0.01 NTU (FNU), whichever is greater

Resolution 0.01 NTU on lowest range

Stray Light <0.02 NTU (FNU)

Signal Averaging Selectable on/off

Detector Silicon photovoltaic

Reading Modes (user selectable) Normal (Push to Read) Signal Averaging Rapidly Settling Turbidity

Data Logger 500 records

Power Requirement 110-230 Vac, 50/60 Hz (with Power or USB+Power Module) 4 AA alkaline batteries Rechargeable NiMH (for use with USB+Power Module) Operating Conditions Temperature: 0 to 50°C (32 to 122°F) Relative Humidity: 0 to 90% @ 30°C, 0 to 80% @ 40°C, 0 to 70% @ 50°C, noncondensing

Storage Conditions -40 to 60°C (-40 to 140°F), instrument only

Languages English, French, German, Italian, Spanish, Portuguese (BR), Portuguese (PT), Bulgarian, Chinese, Czech, Danish, Dutch, Finnish, Greek, Hungarian, Japanese, Korean, Polish, Romanian, Russian, Slovenian, Swedish, Turkish

Interface Optional USB

Instrument Enclosure Rating IP67 (closed lid, battery compartment excluded)

Protection Class Power Supply: Class II

Certification CE certified

Sample Required 15 mL (0.3 oz.)

Sample Cells 60 x 25 mm (2.36 x 1 in.) borosilicate glass with screw cap

Dimensions 22.9 x 10.7 x 7.7 cm (9.0 x4.2 x 3.0 in.)

Weight 527 g (1.16 lb) without batteries 618 g (1.36 lb) with four AA alkaline batteries

Warranty 1 year

Sondes: EXO1 EXO2

Cable connector, battery valve, and expansion port for an additional sensor

EXO2 sonde contains 6 universal sensor ports plus a central port for an anti-fouling wiper

Battery Compartment

Cutaway: Reinforced internal structure

Anti-fouling wiper keeps sensors clear of biofouling and lengthens deployment times by 25%

Welded Titanium Housing

EXO1 sonde contains 4 universal sensor ports

Instrument Specifications*

EXO1 Sonde			
Ports	4 sensor ports Peripheral port: 1 power communication port		
Size	Diameter: 4.70 cm (1.85 in) Length: 64.77 cm (25.50 in)		
Weight	1.42 kg (3.15 lbs) with 4 probes, guard a	nd batteries installed	
EXO2 Sonde			
Ports	7 sensor ports (6 ports available when central wiper used) Peripheral ports: 1 power communication port; 1 auxiliary expansion port		
Size	Diameter: 7.62 cm (3.00 in) Length: 71.10 cm (28.00 in)		
Weight	3.60 kg (7.90 lbs) with 5 probes, guard a	nd batteries installed	
Sondes			
Operating Temperature	-5 to 50°C		
Storage Temperature	-20 to 80°C (except 0 to 60°C for pH and	pH/ORP sensors)	
Depth Rating	0 to 250 m (0 to 820 ft)		
Communications	Computer Interface: Bluetooth wireless t Output Options: USB with signal output a	echnology, RS-485, USB dapter (SOA); RS-232 & SDI-12 with DCP-SOA	
Sample Rate	Up to 4 Hz		
Battery Life	90 days**		
Data Memory	512 MB total memory; >1,000,000 logge	ed readings	
Sensors		Calculated Parameters	
Ammonium	ORP	Salinity	
Chloride	рН	Specific Conductance	
Conductivity	Temperature	Total Dissolved Solids	
Depth	Total Algae (Chlorophyll + BGA-PC or PE)	Total Suspended Solids	
Dissolved Oxygen	Turbidity		
Fluorescent Dissolved Organic Matter (fDOM)	Vented Level		
Nitrate			
EXO Handheld			
Size	Width: 12.00 cm (4.72 in) Height: 25.00 cm (9.84 in)		
Weight	0.71 kg (1.56 lbs) without batteries		
Operating System	Windows CE 5.0		
Operating Temperature	-10 to 50°C		
Storage Temperature	-20 to 80°C		
IP Rating	IP-67		
Data Memory	2 GB total memory; >2,000,000 data sets	S	
Accessories			
Cables (vented and non-vented)	Flow cells	Sonde/sensor guard	
Carrying case	KOR software	Calibration cup	
DCP Signal Output Adapter	USB Signal Output Adapter Anti-fouling components		
Warranty			
3 months	Replaceable reagent modules for ammo	nium, chloride, and nitrate	
1 Year	Optical DO membranes and replaceable reagent moldules for pH and pH/ORP		
2 Years	Cables; sonde bulkheads; handheld; conductivity, temperature, depth, and optical sensors; electronics base for pH, pH/ORP, ammonium, chloride, and nitrate sensors; and accessories		

* Specifications indicate typical performance and are subject to change.

Please check EXOwater.com for up-to-date information.

EXO Bluetooth modules comply with Part 15C of FCC Rules and have FCC, CE Mark and C-tick approval. Bluetooth-type approvals and regulations can be country specific. Check local laws and regulations to insure that the use of wireless products purchased from Xylem are in full compliance.

** Typically 90 days at 20°C at 15-minute logging interval; temperature/conductivity, pH/ ORP, DO, and turbidity sensors installed on EXO1; or temperature/conductivity, pH/ORP, DO, total algae, and turbidity sensors installed with central wiper that rotates once per logging interval on EXO2. Battery life is heavily dependent on sensor configuration. 10

Sensor Specifications*

Sensor	Range	Accuracy*	Response	Resolution
Ammonium ¹¹ (ammonia with pH sensor)	0 to 200 mg/L ¹	±10% of reading or 2 mg/L-N, w.i.g.	-	0.01 mg/L
Barometer	375 to 825 mmHg	±1.5 mmHg from 0 to 50°C	-	0.1 mmHg
Blue-green Algae Phycocyanin (PC) (part of Total Algae sensor)	0 to 100 RFU; 0 to 100 µg/L PC	Linearity: R ² > 0.999 for serial dilution of Rhodamine WT solution from 0 to 100 µg/mL PC equivalents	T63<2 sec	0.01 RFU; 0.01 μg/L PC
Blue-green Algae Phycoerythrin (PE) (part of Total Algae sensor)	0 to 100 RFU; 0 to 280 µg/L PE	Linearity: R ² > 0.999 for serial dilution of Rhodamine WT solution from 0 to 280 µg/mL PE equivalents	T63<2 sec	0.01 RFU; 0.01 μg/L PE
Chloride ¹¹	0 to 1000 mg/L-Cl ²	±15% of reading or 5 mg/L-Cl, w.i.g.	-	0.01 mg/L
Chlorophyll (part of Total Algae sensor)	0 to 400 μg/L Chl; 0 to 100 RFU	Linearity: R ² > 0.999 for serial dilution of Rhodamine WT solution from 0 to 400 µg/L Chl equivalents	T63<2 sec	0.01 μg/L Chl; 0.01 RFU
Conductivity ³	0 to 200 mS/cm	0 to 100: ±0.5% of reading or 0.001 mS/cm, w.i.g.; 100 to 200: ±1% of reading	T63<2 sec	0.0001 to 0.01 mS/cm (range dependent)
	0 to 10 m (0 to 33 ft)	±0.04% FS (±0.004 m or ±0.013 ft)		
Depth ⁴ (non-vented)	0 to 100 m (0 to 328 ft)	±0.04% FS (±0.04 m or ±0.13 ft)	T42 <2 000	0.001 m (0.001 ft)
	0 to 250 m (0 to 820 ft)	±0.04% FS (±0.10 m or ±0.33 ft)	103<2 Sec	(auto-ranging)
Vented Level	0 to 10 m (0 to 33 ft)	±0.03% FS (±0.003 m or ±0.010 ft)		
Dissolved Oxygen Optical	0 to 500% air saturation	0 to 200%: ±1% of reading or 1% saturation, w.i.g.; 200 to 500%: ±5% of reading ⁵	T() - 5 6	0.1% air saturation
	0 to 50 mg/L	0 to 20 mg/L: \pm 0.1 mg/L or 1% of reading, w.i.g.; 20 to 50 mg/L: \pm 5% of reading ⁵	163<5 sec *	0.01 mg/L
fDOM	0 to 300 ppb Quinine Sulfate equivalents (QSE)	Linearity: R ² > 0.999 for serial dilution of 300 ppb QS solution Detection Limit: 0.07 ppb QSE	T63<2 sec	0.01 ppb QSE
Nitrate ¹¹	0 to 200 mg/L-N ¹	±10% of reading or 2 mg/L-N, w.i.g.	-	0.01 mg/L
ORP	-999 to 999 mV	±20 mV in Redox standard solutions	T63<5 sec 7	0.1 mV
рН	0 to 14 units	± 0.1 pH units within $\pm 10^{\circ}$ C of calibra- tion temp; ± 0.2 pH units for entire temp range ⁸	T63<3 sec ⁹	0.01 units
Salinity (Calculated from Conductivity and Temperature)	0 to 70 ppt	±1.0% of reading or 0.1 ppt, w.i.g.	T63<2 sec	0.01 ppt
Specific Conductance (Calculated from Cond. and Temp.)	0 to 200 mS/cm	±0.5% of reading or .001 mS/cm, w.i.g.	-	0.001, 0.01, 0.1 mS/cm (auto-scaling)
Temperature	-5 to 50°C	-5 to 35°C: ±0.01°C ¹⁰ 35 to 50°C: ±0.05°C ¹⁰	T63<1 sec	0.001 °C
Total Dissolved Solids (TDS) (Calculated from Conductivity and Temperature)	0 to 100,000 g/L Cal constant range 0.30 to 1.00 (0.64 default)	Not Specified	-	variable
Total Suspended Solids (TSS) (Calculated from Turbidity and user reference samples)	0 to 1500 mg/L	Not Specified	T63<2 sec	variable
Turbidity ¹¹	0 to 4000 FNU	0 to 999 FNU: 0.3 FNU or $\pm 2\%$ of reading, w.i.g.; 1000 to 4000 FNU: $\pm 5\%$ of reading 12	T63<2 sec	0 to 999 FNU: 0.01 FNU; 1000 to 4000 FNU: 0.1 FNU

All sensors have a depth rating to 250 m (820 ft), except shallow and medium depth sensors and ISEs. EXO sensors are not backward compatible with 6-Series sondes.

* Specifications indicate typical performance and are subject to change. Please check EXOwater.com for up-to-date information. Accuracy specification is attained immediately following calibration under controlled and stable environmental conditions. Performance in the natural environment may vary from quoted specification.

² 0-40°C ¹ 0-30°C w.i.g. = whichever is greater

¹0-30 C
 ³ Outputs of specific conductance (conductivity corrected to 25°C) and total dissolved solids are also provided. The values are automatically calculated from conductivity according to algorithms found in *Standard Methods for the Examination of Water and Wastewater* (Ed. 1989).

⁴ Accuracy specifications apply to conductivity levels of 0 to 100,000 μS/cm.
 ⁵ Relative to calibration gases
 ⁶ When transferred from air-saturated water to stirred deaerated water
 ⁷ When transferred from water-saturated air to Zobell solution

⁸ Within transferred from water-saturated air to Zoben solution
 ⁸ Within the environmental pH range of pH 4 to pH 10
 ⁹ On transfer from water-saturated air to rapidly stirred air-saturated water at a specific conductance of 800 µS/cm at 20°C; T63<5 seconds on transfer from water-saturated air to slowly-stirred air-saturated water.
 ¹⁰ Temperature accuracy traceable to NIST standards
 ¹¹ Celliperature accuracy traceable to the back standards

¹¹ Calibration: 1-, 2-, or 3-point, user-selectable ¹² Specification is defined in AMCO-AEPA Standards

FH950 Portable Velocity Meter with 20' Cable

Product #: FH950.10020 Quantity USD Price: \$4,585.00 Ships within 2 weeks

Reduce manhours 50%

The step-by-step user interface simplifies programming, delivers real-time data, and downloads directly to PC allowing a single person to take the readings and eliminating post site visit manual data transfer from logbook to PC

Automatically calculates total discharge based on USGS and ISO methods Reduces time to manually calculate and likelihood of errors

Real-time velocity graphed on color display Visualize velocity trends quickly

Lowest maintenance solution on the market Electromagnetic velocity sensor with no moving parts never requires mechanical maintenance

Lightweight, rugged portable meter

Only 1.5 pounds

What's in the box

FH950.1 System Includes:

- Portable Velocity Meter
- Electromagnetic Sensor with 20' cable
- Fabric Carrying Case
- Adjustable Meter Rod Mount
- Universal Sensor Mount
- Battery Charger with Domestic/International Plug Adapters
- USB Cable
- Lanyard
- Sensor Screw Kit
- Absorbent Wipe

Specifications

Accuracy 2:	\pm 2% of reading \pm 0.05 ft/s (\pm 0.015 m/s) through the range of 0 to 10 ft/s (0 to 3.04 ms/s); \pm 4% of reading from 10 to 16 ft/s (3.04 to 4.87 m/s)
Battery Life:	heavy typical day use; 68°F (20°C)
Display: LCD:	Color, LCD 3.5 QVGA transflective (readable in direct sunlight)
Keypad:	Alpha-numerica
Operating Temperature Range:	-20 to 55 °C
Range:	to ft/s
Resolution:	Measurement Resolution - <10: 0.001; <100: 0.01; >100: 0.1
Storage Conditions:	-20 °C to 60 °C