

Level 3 Project Study Plan

2022 Cuyahoga River Environmental Monitoring

Table of Contents

List of	Acronyms	2
(1)	Objective	3
(2)	Non-point/Point Sources	4
(6)	Sampling Locations	4

2022 Cuyahoga River Environmental Monitoring April 20, 2022

List of Acronyms

AOC	Area of Concern
CSO	Combined Sewer Overflow
EPA	Environmental Protection Agency
GPS	Global Positioning System
HUC	Hydrologic Unit Code
IBI	Index of Biotic Integrity
ICI	Invertebrate Community Index
MIwb	Modified Index of Well-Being
NEORSD	Northeast Ohio Regional Sewer District
NPDES	National Pollution Discharge Elimination System
QHEI	Qualitative Habitat Evaluation Index
RM	River Mile
SOMRS	SOM Relief Sewer
TMDL	Total Maximum Daily Load
USGS	United States Geological Survey
WQIS	Water Quality & Industrial Surveillance
WWTC	Wastewater Treatment Center

(1) Objective

The lower 46.5 miles of the Cuyahoga River has been designated as one of 42 Great Lakes Areas of Concern (AOC) by the International Joint Commission. Past monitoring indicated impairment of aquatic biota in the river and was the basis for the establishment of Total Maximum Daily Loads (TMDLs) for the Lower Cuyahoga River. The causes of impairment to the river were classified as organic enrichment, toxicity, low dissolved oxygen, nutrients, and flow alteration (Ohio EPA, 2003). Recent monitoring by the Northeast Ohio Regional Sewer District (NEORSD), however, has shown recovery of the biological communities in some reaches of the river. The purpose of this study is to determine the attainment status of the river sections in relation to point and nonpoint sources of pollution. Monitoring will also be conducted upstream of the former State Route 82 Dam in Brecksville to determine if removal of that dam has resulted in improvements to the biological communities.

During the course of this study, the fish communities, benthic macroinvertebrate communities, habitat, and water chemistry will be surveyed at six sites in the Cuyahoga River. This sampling will be conducted by the NEORSD's Environmental Assessment group in the Water Quality and Industrial Surveillance (WQIS) Division. Sampling will occur from June 15 through September 30, 2022 (through October 15 for fish sampling assessments), as required in the Ohio EPA Biological Criteria for the Protection of Aquatic Life Volume III (1987b). The results from these surveys will be used to characterize the overall fish and macroinvertebrate community health in the river.

Fish and macroinvertebrate community health will be evaluated using Ohio EPA's Index of Biotic Integrity (IBI), Modified Index of Well-Being (MIwb) and Invertebrate Community Index (ICI). An examination of the biological communities will be used in conjunction with water quality data, the NEORSD Macroinvertebrate Field Sheet, and Qualitative Habitat Evaluation Index (QHEI) results in order to identify impacts to the communities. Results will be compared to historic data to show temporal as well as spatial trends. Water chemistry data will also be compared to the Ohio Water Quality Standards to determine attainment of applicable uses (Ohio EPA, 2021).

In addition, chlorophyll *a* levels in the river may be measured at all six sites to assist in the determination of the impacts from nutrients in the river on the algal production. If completed, data sondes may be installed in the river as part of this sampling to provide a more comprehensive understanding of the relationship among algal production, nutrient levels, and dissolved oxygen level swings in the river.

Please see "2022 NEORSD Watershed Monitoring Study Plan" for further details regarding study activities and supporting documentation.

(2) Non-point/Point Sources

Table 1. Potential Sources of Pollution						
Point Sources (Location on river)	Nonpoint Sources					
Sagamore Creek (RM 18.06)	Agricultural runoff					
Tinkers Creek (RM 16.38)	Urban runoff					
Mill Creek (RM 11.49)	Landfills					
West Creek (RM 11.05)	Spills					
Southerly WWTC (RM 10.57)						
Ohio Canal (RM 8.78)						
Combined Sewer Overflows						
Storm Sewer Outfalls						
Home Septic Systems						
NPDES permitted facilities						

A map has been provided below (Figure 1) to show the wastewater collection system that may be influencing the water quality at each sample location. These sources, along with the ones listed in the table above, may be impacting the health of the fish, benthic macroinvertebrate communities and water chemistry in the Cuyahoga River watershed.

(6) Sampling Locations

The following electrofishing and macroinvertebrate sampling locations, listed from upstream to downstream, will be surveyed during the 2022 field season and are summarized in Table 2 below. Benthic macroinvertebrate and water chemistry collection sites are located near the midpoint of each electrofishing zone, indicated by RM, unless otherwise noted. GPS coordinates are recorded at the downstream end of each sampling zone.

	Table 2. Cuyahoga River Monitoring Sites									
Location	Latitude	Longitude	River Mile	Station ID	Description	USGS HUC 8	Purpose			
Upstream of State Route 82	41.3207	-81.5875	20.75	304227	Upstream of the State Route 82 dam and downstream of the confluence with Chippewa Creek	04110002 - Cuyahoga	Evaluate water chemistry, fish, habitat, and macroinvertebrates upstream of State Route 82 dam after removal			
Upstream of Rockside Road	41.3929	-81.6295	13.15	502020	Upstream of Rockside Road	04110002 - Cuyahoga	Evaluate Southerly WWTC and CSO discharges on fish, habitat, macroinvertebrates, water chemistry, and chlorophyll <i>a</i> levels.			
Downstream of Mill Creek	41.4179	-81.6446	11.30	F01S10	Downstream of confluence with Mill Creek	04110002 - Cuyahoga	Evaluate Mill and West Creek discharges on fish, habitat, and macroinvertebrates.			
Upstream of Southerly WWTC	41.4196	-81.6547	10.75	F01A25	Upstream of Southerly WWTC effluent discharge	04110002 - Cuyahoga	Evaluate Southerly WWTC and CSO discharges on fish, habitat, macroinvertebrates, water chemistry and chlorophyll <i>a</i> levels.			
Downstream of Southerly WWTC	41.4242	-81.6638	10.10	F99Q02	Downstream of Southerly WWTC effluent discharge	04110002 - Cuyahoga	Evaluate Southerly WWTC and CSO discharges on fish, habitat, macroinvertebrates, water chemistry and chlorophyll <i>a</i> levels.			
Downstream of Southerly WWTC	41.4381	-81.6680	8.60	200025	Downstream of Southerly WWTC	04110002 - Cuyahoga	Evaluate Southerly WWTC and CSO discharges on fish, habitat,			

2022 Cuyahoga River Environmental Monitoring April 20, 2022

Table 2. Cuyahoga River Monitoring Sites									
Location	Longitude	River Mile	Station ID	Description	USGS HUC 8	Purpose			
					effluent discharge		macroinvertebrates, water chemistry and chlorophyll <i>a</i> levels.		

2022 Cuyahoga River Environmental Monitoring April 20, 2022

Figure 1. Map of Cuyahoga River Monitoring Sites

2022 NEORSD Watershed Monitoring Study Plan

Table of Contents

List of	Acronyms	2
(3)	Parameters Covered	3
(4)	Field Collection and Data Assessment Techniques	4
(5)	Stream Flow Measurement	6
(7)	Schedule	6
(8)	QA/QC	7
(9)	Work Products	9
(10)	Qualified Data Collectors	9
(11)	Contract laboratory contact information	11
(12)	Copy of ODNR collector's permit	11
(13)	Digital Catalog Statement	11
(14)	Voucher Specimen Statement	12
(15)	Sample Location Statement	12
(16)	Additional L3 Data Collector Statement	12
(17)	Trespassing Statement	13
Appen	dix A. Field Forms	14
Appen	dix B. Parameter Information	25
Appen	dix C. Meter Specifications	29
Appen	dix D. Chlorophyll a Field Form	11
Appen	dix E. Laboratory Certifications	14
Apper	dix F. Acknowledgment Letters	54
Appen	dix G. Wild Animal Collector's Permit	56
Appen	dix H. References	50
Appen	dix I. Laboratory Quality Manual and Standard Operating Procedures	53

List of Acronyms

DELTs	Deformities, Eroded Fins, Lesions & Tumors
EPA	Environmental Protection Agency
GPS	Global Positioning System
HD	Hester-Dendy
HUC	Hydrologic Unit Code
IBI	Index of Biotic Integrity
ICI	Invertebrate Community Index
LIBI	Lacustuary Index of Biotic Integrity
LICI	Lacustuary Invertebrate Community Index
L-QHEI	Lacustuary Qualitative Habitat Evaluation Index
MIwb	Modified Index of Well-Being
NEORSD	Northeast Ohio Regional Sewer District
PVC	Polyvinyl Chloride
PVDF	Polyvinylidene Fluoride
QDC	Qualified Data Collector
QHEI	Qualitative Habitat Evaluation Index
RM	River Mile
RPD	Relative Percent Difference
SOP	Standard Operating Procedure
USGS	United States Geological Survey
WQIS	Water Quality & Industrial Surveillance

(3) Parameters Covered

Fish specimens will be identified to species level, weighed, counted and examined for the presence of external anomalies including DELTs (deformities, eroded fins, lesions and tumors). An Ohio EPA Fish Data Sheet (Appendix A) will be completed during each assessment. Quantitative fish sampling is expected to be conducted at all locations.

Macroinvertebrate community assemblages will be collected from each location. An external Level 3 Qualified Data Collector for Benthic Macroinvertebrate Biology Identification will identify and enumerate the specimens collected from each site¹. All specimens will be identified to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b)². The NEORSD Macroinvertebrate Field Sheet (Appendix A) will be completed at each site during sample retrieval or when qualitative sampling is conducted.

Stream habitat will be measured by scoring components of the QHEI at all locations, including the substrate, instream cover, channel morphology, riparian zone, bank erosion, pool/glide and riffle/run quality and gradient. The Lacustuary QHEI (L-QHEI) will be performed at sites that are affected by the water level of Lake Erie. Examples of the Ohio EPA field sheets for the QHEI and the L-QHEI can be found in Appendix A.

Water chemistry samples will be collected at each electrofishing/ macroinvertebrate sampling site included in the study. Water chemistry samples will be analyzed by NEORSD's Analytical Services Division. Appendix B lists the parameters to be tested along with the detection limits and practical quantitation limits. Field measurements for dissolved oxygen, pH, temperature, conductivity and turbidity will also be performed. A Surface Water Condition Sampling Field Data Form will be completed at each site during each sampling event (Appendix A).

Benthic and water column chlorophyll *a* samples may be collected from stream locations. Chemical and physical water quality parameters to be measured in conjunction with the chlorophyll *a* samples include total phosphorus, dissolved reactive phosphorus, nitrite, nitrate+nitrite, ammonia, alkalinity, turbidity and suspended solids. In the Cuyahoga River, YSI 6600EDS, or EXO2 data sondes may be installed at RMs 16.20, 10.75, 10.10, and 7.00 around the time that this sampling is conducted to more frequently monitor dissolved oxygen, temperature, conductivity, specific conductivity and pH.

¹ The contractor responsible for doing this work as not been identified yet. Once this contract is awarded, their contact information will be submitted.

²See Appendix H for a list of all references.

- (4) Field Collection and Data Assessment Techniques
 - Field collections for fish will be conducted at all stream locations unless noted in the sample location table for each study. Sampling will be conducted using longline, tote barge, backpack, or boat electrofishing techniques and will consist of shocking all habitat types within a sampling zone. Headwater and wading sites, which are 0.15 and 0.20 kilometers in length, respectively, will be surveyed by moving from downstream to upstream. Boat sites, which are 0.50 kilometers in length, will be surveyed by moving from upstream to downstream. The stunned fish will be collected and placed into a live well for later identification. The longline, tote barge, backpack, and boat electrofishing zones will be assessed one to three times during the field season (June 15 October 15).

Fish will be identified to the species level, weighed, counted, and examined for the presence of external anomalies including DELTs. Fish easily identified (commonly collected from year to year) will be returned to the site from which they are collected. Fish species difficult to identify will be brought back to the laboratory for verification by NEORSD Level 3 Fish Qualified Data Collectors (QDC). If necessary, vouchers will be sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Voucher specimens will be collected as described in section (14). Endangered species and those too large for preservation will not be collected as voucher specimens, but will instead be photographed. Photographed vouchers will include features that permit definitive identification of the particular species.

Fish will be preserved in 10 percent formalin in the field, soaked in tap water for 24 to 48 hours after 5 to 7 days, then transferred to solutions of 30 and 50 percent ethanol for 5 to 7 days each and, finally, to 70 percent ethanol for long-term storage. Specimens larger than six inches will be slit along the right side and then soaked in formalin for approximately 10 to 14 days before being transferred to water and solutions of 30, 50 and 70 percent ethanol. Label information will include location (description and coordinates), date, time, collectors' names and sample identification code for each specimen collected.

Macroinvertebrate sampling will be conducted using quantitative and qualitative sampling techniques. Quantitative sampling will be done using a modified Hester-Dendy multi-plate artificial substrate sampler (HD) that is colonized for a six-week period. Multiple HD samplers may be installed at one or all sampling locations in case samplers are lost due to vandalism, burial, etc. or for the purposes of providing a replicate sample. Qualitative sampling will be conducted using a D-frame dip net when HD samplers are retrieved. The NEORSD Macroinvertebrate Field Sheet will be completed during each HD retrieval.

Macroinvertebrate voucher specimens for both quantitative and qualitative sampling will be collected as described in section (14). Macroinvertebrate community assemblages collected will be shipped to an external Level 3 Qualified Data Collector for Benthic Macroinvertebrate Biology Identification for identification and enumeration. The Level 3 QDC will identify specimens to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life*, *Volume III* (1987b).

A detailed description of the sampling and analysis methods utilized in the fish community and macroinvertebrate surveys, including calculations of the IBI, MIwb, and ICI, can be found in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life*, Volumes II (1987a) and III (1987b). Methods for assessing fish and macroinvertebrate communities in lacustuary zones can be found in Ohio EPA's draft *Biological Criteria for the Protection of Aquatic Life*, Volume IV (1997).

The QHEI, as described in Ohio EPA's Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI) (2006) will be used to assess aquatic habitat conditions at each sample location. The L-QHEI will be used where appropriate and will follow Ohio EPA's Methods of Assessing Habitat in Lake Erie Shoreline Waters Using the Qualitative Habitat Evaluation Index (QHEI) Approach (Version 2.1) (2010).

Water chemistry sampling may occur across a variety of flow conditions. Techniques used for water chemistry sampling and chemical analyses will follow the Surface Water Field Sampling Manual for water quality parameters and flows (Ohio EPA, 2021a). Chemical water quality samples from each site will be collected with at least one 4-liter disposable polyethylene cubitainers with disposable polypropylene lids and two 473-mL plastic bottles. Water samples collected for analysis of dissolved reactive phosphorus will be filtered using a $0.45-\mu$ m PVDF syringe filter and will be collected in a 125-mL plastic bottle. Bacteriological samples will be collected in a sterile plastic bottle preserved with sodium thiosulfate. All water quality samples will be collected as grab samples. Duplicates and replicates will together comprise not less than 5% of total samples collected for each study plan. Field blanks will also comprise not less than 5% of the total samples collected for each study plan, for a total frequency of quality control samples of not less than 10% of the total samples collected. With the exception of bacteriological duplicate/replicate samples, the acceptable percent RPD will be based on the ratio of the sample concentration and detection limit (Ohio EPA, 2019): Acceptable % RPD = $[(0.9465X^{-0.344})*100] + 5$, where X = sample/detection limit ratio. For bacteriological samples, duplicate/replicate samples more than 5x apart from one another (%RPD > 133.3%) will be rejected in accordance with the Ohio EPA approved method for data validation of bacteriological samples outlined in Section F of the Ohio 2020 Integrated Water Quality Monitoring and Assessment Report (Ohio EPA, 2020). Those RPDs that were higher than acceptable may indicate potential problems with sample collection and, as a result, the data will not be used for comparison to the water quality standards. Acid preservation of the samples, as specified in the NEORSD laboratory's standard operating procedure for each parameter, will occur in the field. Appendix B lists the analytical method, method detection limit and practical quantitation limit for each parameter analyzed. Field analyses include the use of either a YSI EXO1 sonde, or YSI 600XL sonde to measure dissolved oxygen (DO), water temperature, conductivity and pH; and when necessary, a Hanna HI 98129 meter to measure pH and a

Hach HQ30d meter with LDO101 probe to measure DO. Field turbidity will be measured using a Hach 2100Q Turbidimeter. Specifications for these meters have been included in Appendix C.

Benthic and water column chlorophyll *a* samples may be collected if time and resources allow. Sampling methods will follow those detailed in the NEORSD *Chlorophyll a Sampling and Field Filtering Standard Operating Procedure* (SOP-EA001-00). A Chlorophyll *a* Sampling Field Sheet will be completed for each site where benthic chlorophyll *a* samples are collected (Appendix D). Water chemistry grab samples will be collected at the same time using the methods discussed previously and will be analyzed for nutrients, turbidity, alkalinity and suspended solids. Additionally, in the Cuyahoga River, approximately 24-hours prior to each chlorophyll *a* sampling event, YSI EXO2 data sondes may be deployed at RMs 16.20, 10.75, 10.10 and 7.00. If installed, each data sonde will record, at fifteen-minute intervals, dissolved oxygen concentration, pH, temperature, and conductivity from the time the data sonde is deployed until the time it is retrieved. These data sondes will be placed in the stream by inserting each one into a 4.5-inch PVC pipe with holes drilled into the sides of the lower third of the pipe to allow water to pass through it. The data sondes will remain in the river for approximately 24-hours or longer following collection of the chlorophyll *a* samples.

Where possible, data assessment will include an analysis of temporal and spatial trends in the collected data. Species assemblages and individual metrics will be analyzed. Graphs that show current and historic QHEI, L-QHEI, IBI, LIBI, MIwb, ICI, and LICI scores and how these scores compare to attainment status of biocriteria will be prepared. Water chemistry data collected will be compared to Ohio water quality standards to determine whether any excursions from the applicable water quality criteria have occurred. It will also be used to determine any relationships among individual parameters and chlorophyll *a* concentrations. Comparisons between water quality and biological community health will only be made if at least three water quality samples have been collected from that site.

(5) Stream Flow Measurement

Stream flow will be recorded for all locations during each electrofishing pass utilizing data from the United States Geological Survey (USGS) gauge station nearest the stream location, if applicable.

Stream flow will be measured with a HACH FH950 Flow Meter or Ott MF Pro Meter, which measure flow in feet per second, when HD samplers are installed and retrieved. The specifications for the flow meters can be found in Appendix C.

(7) Schedule

One to three electrofishing surveys will be conducted at each site between June 15 and October 15, 2022. Surveys will be conducted at least three weeks apart. Specific dates

have not been scheduled. River flow and weather conditions will be assessed weekly to determine when each electrofishing pass will be conducted.

Artificial substrate samplers will be installed at stream locations between June 15 and August 19, 2022 and retrieved six weeks later. Qualitative macroinvertebrate sampling will be conducted one time at all sites. Specific dates have not been scheduled. River flow and weather conditions will be assessed weekly to determine when the HD sampler installations and retrievals and qualitative sampling will be conducted.

QHEI, and, if necessary, L-QHEI habitat evaluations will be conducted one time between June 15 and October 15, 2022. QHEI evaluations will be conducted around the same time as one of the electrofishing surveys.

Water chemistry samples will be collected a minimum of three times from stream locations between June 15 and October 15, 2022.

Benthic and water column chlorophyll *a* samples may be collected at least one time from stream locations between June 15 and October 15, 2022. These samples will be collected under low-flow conditions.

(8) QA/QC

Quality assurance and quality control of sampling and analysis methods for habitat, fish, and macroinvertebrate evaluations will follow Ohio EPA's Biological Criteria for the Protection of Aquatic Life, Volumes II (1987a) and III (1987b), Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI) (2006), draft Biological Criteria for the Protection of Aquatic Life: Volume IV: Fish and Macroinvertebrate Indicies for Ohio's Lake Erie Nearshore Waters, Harbors, and Lacustuaries (1997) and Methods of Assessing Habitat in Lake Erie Shoreline Waters Using the Qualitative Habitat Evaluation Index (QHEI) Approach (Version 2.1) (2010)

Electrofishing equipment will be used according to the guidelines listed in the operation and maintenance manual provided by Smith-Root, Inc. Malfunctioning equipment will not be used to collect data. Proper steps will be taken to correct any problems as soon as possible, whether by repairing in the field, at the NEORSD Environmental & Maintenance Services Center, or by contacting the supplier or an appropriate service company.

Fish species difficult to identify will be brought back to the laboratory for verification by Level 3 Fish QDC's, and if necessary, sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Voucher specimens will be collected as described in section (14). Endangered species and those too large for preservation will not be collected as voucher specimens, but will instead be photographed. Photographed vouchers will include features that permit definitive identification of the particular species.

All macroinvertebrate community assemblages from stream locations, except for any replicate samples, will be collected and shipped to an external Level 3 Qualified Data Collector for Benthic Macroinvertebrate Biology Identification for identification and enumeration. All specimens will be identified to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b). All macroinvertebrate specimens will be returned to NEORSD. At least two voucher specimens of each species, when available, will be separated into individual vials and kept as described in section (14). The remaining specimens for each site will be returned in a single container labeled with the site number and collection method and date. All specimens and accompanying chain-of-custody documentation will be retained by NEORSD and stored at the Environmental & Maintenance Services Center for a period not less than ten years.

Water samples obtained for chemical analyses will be collected, preserved (see Section 4), labeled and then placed on ice inside the field truck. The field truck will remain locked at all times when not occupied/visible. Sampling activities, including sample time and condition of surface water sampled, will be entered in a field log book and on the Surface Water Condition Sampling Field Data Form. The samples will then be delivered immediately to the NEORSD Analytical Services cooler, after which the door to the cooler will be locked, and the samples will be transferred to the custody of Analytical Services. The NEORSD Analytical Services are provided in Appendix I. Updates, revisions and any information on document control will be sent to Ohio EPA as needed.

For benthic and water column chlorophyll *a* sampling, three filtrations will be performed for each sample. A field filtration blank will be submitted for every 20 samples.

Calibration of YSI 600XL, EXO1, and EXO2 data sondes will be done according to the YSI Environmental Operations Manual. The conductivity will be calibrated first using a 1.413 mS/cm standard. Second, the pH will be calibrated using two different buffers (7 and 10 s.u.). The DO will be calibrated last with an acceptable error of 0.2 mg/L.

Once the EXO2 sondes are removed from the river following long-term installation, the accuracy of the data that has been collected will be checked by comparing readings taken by the sondes to known standards. If the measurements taken at this time meet quality control goals, all of the data collected since the last calibration will be considered accurate. The acceptable differences for pH and conductivity will be ± 0.3 with pH 7 buffer and $\pm 10\%$ of the conductivity standard, respectively (EPA New England- Region 1, 2005). The acceptable difference for DO will be ± 0.2 mg/L. If the measurements do not meet quality control goals, best professional judgment will be used to decide if any of the data collected during that period may still be accurate. For example, the data collected from the four locations may be plotted on the same graph, and if it appears that the data points are

following similar trends, they may be considered accurate. If any data that do not meet quality control goals are used, a rationale for their inclusion will be provided when the data are submitted.

(9) Work Products

Within one year of completion of the project, fish data (species, numbers, weights, pollution tolerances, the incidence of DELT anomalies, IBI or LIBI, MIwb scores), macroinvertebrate data (types and numbers of macroinvertebrates collected and ICI or LICI scores), habitat data (QHEI or L-QHEI raw data and scores) and water chemistry results will be submitted to the Ohio EPA or an Ohio EPA approved data warehouse. Additionally, reports summarizing, interpreting, graphically presenting and discussing the IBI (LIBI, where applicable), MIwb, ICI (LICI, where applicable) and QHEI (L-QHEI, where applicable) scores, chlorophyll *a* results, and any excursions from water quality standards may be prepared for internal use.

(10) Qualified Data Collectors

The following Level 3 Qualified Data Collectors (QDC) will be involved with this study:

Name	Address	Email Address	Phone	QDC Specialty(s)
			Number	
Hannah	4747 East 49 th Street	boosingorb@poorsd.org	216-641-	QDC – 01374
Boesinger	Cuyahoga Hts., Ohio 44125	boesingern@neorsd.org	6000	CWQA/BMB
Soth	4747 East 40 th Stroot		216 611	QDC - 00010
Jothom ¹	4747 East 47 Street	hothems@neorsd.org	210-041-	CWQA/FCB/SHA
пошен	Cuyanoga Hts., Onio 44125		8000	/BMB
Jillian	4747 East 49 th Street	knittlei@neered era	216-641-	QDC – 00512
Knittle	Cuyahoga Hts., Ohio 44125	knittlej@neorsd.org	6000	CWQA/BMB
Ron	4747 East 49 th Street		216-641-	QDC - 00145
Maichle	Cuyahoga Hts., Ohio 44125	maichier@neorsd.org	6000	CWQA/BMB
Mark	4747 East 49 th Street	mattacan m@naarad arr	216-641-	QDC – 01020
Matteson	Cuyahoga Hts., Ohio 44125	mattesonm@neorsd.org	6000	CWQA/FCB/SHA
Denise	4747 East 49 th Street	nhillingd@naarad arg	216-641-	QDC – 01203
Phillips	Cuyahoga Hts., Ohio 44125	philipsd@neorsd.org	6000	CWQA
Francisco	4747 East 49 th Street	riveref@reered.ere	216-641-	QDC - 00262
Rivera	Cuyahoga Hts., Ohio 44125	nveral@neorsd.org	6000	CWQA
Eric	4747 East 49 th Street		216-641-	QDC – 01030
Soehnlen	Cuyahoga Hts., Ohio 44125	soenniene@neorsd.org	6000	CWQA/BMB
Justin	4747 East 49 th Street	talani@naarad ara	216-641-	QDC - 01304
Telep	Cuyahoga Hts., Ohio 44125	telepj@neorsd.org	6000	CWQA/FCB/SHA
John	4747 East 49 th Street		216-641-	QDC - 00008
Rhoades	Cuyahoga Hts., Ohio 44125	rnoadesj@neorsd.org	6000	CWQA
Kelsey	4747 East 49 th Street	and damb On a small sum	216-641-	QDC - 01091
Amidon ²	Cuyahoga Hts., Ohio 44125	amidonk@neorsd.org	6000	CWQA
¹ NEORSD L	ead Project Manager			

Name	Address	Email Address	Phone	QDC Specialty(s)
			Number	
² See acknow	ledgement letter for conducti	ng water chemistry samplin	g (Appendix F)	

The following is a list of persons not qualified as Level 3 QDCs who may be involved in the project. Prior to the start of sampling, the project managers will explain to each individual the proper methods for sampling. Sampling will only be completed under the direct observation of a QDC. The lead project manager will be responsible for reviewing all reports and data analysis prepared by qualified personnel prior to completion.

Name	Address	Email Address	Phone Number	
Lindsay Baker	4747 East 49 th Street	bakerl@neorsd.org	216-641-6000	
	Cuyahoga Hts., Ohio 44125	bakerre neorsalorg	210 011 0000	
Brittany Dalton	4747 East 49 th Street	daltonb@peorsd.org	216-641-6000	
Difficulty Dation	Cuyahoga Hts., Ohio 44125	dattorib@ricorsd.org	210 041 0000	
Rae Grant	4747 East 49 th Street	grantr@peorsd.org	216-641-6000	
	Cuyahoga Hts., Ohio 44125	granti encorso.org	210-041-0000	
loff Harrison	4747 East 49 th Street	harrisoni@poorsd.org	216 641 6000	
	Cuyahoga Hts., Ohio 44125	Tarrisonj@neorsd.org	210-041-0000	
Matthew Johnson	4747 East 49 th Street	ichpsonmatthow@poorsd.org	216 641 6000	
	Cuyahoga Hts., Ohio 44125	Johnsonmatthew@neorsd.org	210-041-0000	
Shawn Dobinson	4747 East 49 th Street	rehinsons@neared.org	216 641 6000	
Shawn Robinson	Cuyahoga Hts., Ohio 44125	TODITISOTIS@TIEOTSd:Org	210-041-0000	
Frank Sabusabu	4747 East 49 th Street	ashuashuf@paarad.arg	216 641 6000	
FIGHK SCHUSCHU	Cuyahoga Hts., Ohio 44125	schuschur@neorsd.org	210-041-0000	
Wolfram von	4747 East 49 th Street	wonkingrakiw@naarad.org	216 641 6000	
Kiparski	Cuyahoga Hts., Ohio 44125	vonkiparskiw@neorsd.org	210-041-0000	
Thoraca Walah	4747 East 49 th Street	welcht@noored.org	216 641 6000	
	Cuyahoga Hts., Ohio 44125	waisint@neoisd.org	210-041-0000	
	4747 East 49th Street	forgueon@poored.org	216 641 6000	
Laura rergusori	Cuyahoga Hts., Ohio 44125	<u>reigusoni</u> @neoisu.org	210-041-0000	
Paraprofessional	4747 East 49th Street	@poorsd.org	216 641 6000	
Intern (TBD)	Cuyahoga Hts., Ohio 44125	eneorsd.org	210-041-0000	
Paraprofessional	4747 East 49th Street	@poored org	216 641 6000	
Intern (TBD)	Cuyahoga Hts., Ohio 44125		210-041-0000	
Paraprofessional	4747 East 49th Street	@poored org	216 641 6000	
Intern (TBD)	Cuyahoga Hts., Ohio 44125		216-641-6000	

(11) Contract laboratory contact information

All bacteriological and/or chemical sample analysis will be completed by NEORSD's Analytical Services Division. Evidence of NEORSD's Analytical Services current accreditation and method dates can be found in Appendix E. The contact information for NEORSD's Analytical Service Division is:

NEORSD Analytical Services Cheryl Soltis-Muth, Manager 4747 E. 49th Street Cuyahoga Heights, Ohio 44056 soltis-muthc@neorsd.org 216-641-6000

Any fish that is not positively identified in the field, or at NEORSD, will be sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Fish will be identified to the species level.

Mr. Marc Kibbey, Associate Curator of Fish 1315 Kinnear Road, Columbus, Ohio 43212 cavender.1@osu.edu / kibbey.3@osu.edu 614-292-7873

Identification of macroinvertebrates for stream locations will be completed by an external Level 3 Qualified Data Collector for Benthic Macroinvertebrate Biology Identification ³. Benthic macroinvertebrates will be identified to the lowest practical level as recommended by Ohio EPA (1987b). Contact information for this contractor will be submitted once the contract is awarded.

- (12) Copy of ODNR collector's permit See Appendix G.
- (13) Digital Catalog Statement

A digital photo catalog of all sampling locations will be maintained for 10 years and will include photos of the specific sampling location(s), the riparian zone adjacent to the sampling location(s) and the general land use in the immediate vicinity of the sampling location(s).

Print/Signature:	Seth Hothem/	Sen 4	Hoir	Date:	4/18	122
------------------	--------------	-------	------	-------	------	-----

³ A letter of acknowledgement of the macroinvertebrate identification responsibilities will be added as an addendum to this study plan, in Appendix F, upon finalization of the macroinvertebrate identification contract.

(14) Voucher Specimen Statement

NEORSD will maintain a benthic macroinvertebrate and fish voucher collection which includes two specimens, or appropriate photo vouchers, of each species or taxa collected during the course of biological sampling from any stream within the NEORSD's service area. When benthic macroinvertebrates from multiple surface waters are collected within the same year and identified by the same QDC, one voucher collection will be created to represent the specimens collected from those streams. When fish specimens from multiple surface waters are collection will be created to represent the specimens collected from those streams. A separate collection for each sampling event will not be maintained.

NEORSD will provide specimens or photo vouchers to the Director upon request. This collection will be stored at the NEORSD laboratory in the Environmental and Maintenance Services Center.

Print/Signature: Se	th Hothem/	Sott abut	Date:	41	81	22
---------------------	------------	-----------	-------	----	----	----

(15) Sample Location Statement

I attest that I will make available any and all sampling location information, including but not limited to; the name of the water body sampled, sampling location latitude and longitude, sampling location river mile where possible, general location information, the U.S. geological survey HUC 8 number and name, and the purpose for data collection at each sampling location.

Print/Signature:	Seth Hothem/ Soon Hoth	Date: 4/18/22
------------------	------------------------	---------------

(16) Additional L3 Data Collector Statement

The Lead Project Manager for all stream locations is approved for all project data types.

Print/Signature: Seth Hothem/Secr. R. Date: 4/18/22	Print/Signature:	Seth Hothem/ Secn Roll	Date: 4/18/22
---	------------------	------------------------	---------------

(17) Trespassing Statement

I have not been convicted or pleaded guilty to a Violation of section 2911.21 of the Revised Code (criminal trespass) or a substantially similar municipal ordinance within the previous five years.

Print/Signature:	Hannah Boesinger, Hennih Goesyn	Date: 4/14/22
Print/Signature:	Seth Hothem/ Both Afflen	Date: 4/18/22
Print/Signature:	Jillian Knittle/ June Unit	Date: 4/18/22
Print/Signature:	Ron Maichle/ Thut	Date: 04-18-22
Print/Signature:	Mark Matteson/	Date: 4/18/22
Print/Signature:	Denise Phillips/ Denige Colum	Date: 4/18/22
Print/Signature:	John Rhoades/ Al-utal	Date: 04/18/22
Print/Signature:	Francisco Rivera / Fri 7m	Date: 4/18/22
Print/Signature:	Eric Soehnlen/	Date: 4/18/2022
Print/Signature:	Justin Telep/	Date: 4/18/1077_

Appendix A. Field Forms

ChieEZ	FISH D SHEF	ATA Shee			New Station (requires lat/long & cor	Mix	Zone		Pa	ge	of	
Station ID_		Riv	er Code		RM	Date			_Ti	me_		
Stream					——— Locatio	on						
Comments –												
Lat		Long		County		ALP		- Ti	me F	lishe	d	
Crew		Nett	er	Oth	ers		Sam	pler	Тур	e		
Distance	Flow	T	emp. C	Secchi	Source	Project _						
Fins Code	Number Weighed	Total Counted	Total Weight		Weights	counts	Defor	DE mities Multi	LT A , Eros	NON tions, 1	IALI Lesion	ES 1s, Tumo fish
							D	E	L	Т	М	*
							_					
V 10	x						D	E	L	Т	М	*
			·									
V 10	x	1										
							D	E	L	T	M	*
V IO							_					
v 10	x						D	E	L	Т	М	*
V 10	x						D	F	I	Т	M	*
										1		
V 10	x						_					
							D	E	L	Т	М	*
							_					
V 10	x						D	E	L	Т	M	*
												<u> </u>
V 10	x											
							D	E	L	Т	M	*
V/												
v 10	X						D	E	L	Т	М	*
V 10	x								-			

* A-anchor worm; B-black spot; C-leeches; F-fungus; N-blind; P-parasites; S-emaciated, W-swirled scales Y-popeye; Z-other

EPA 4508 11/4/2005

	Fins Code	Number Weighed	Total Counted	Total Weight	WeightsCoun	its		Ра	ige -		- of -	
10				weight			D	Е	L	Т	М	*
	N/											
	V 10x						D	E	L.	Т	М	*
11									L	1	101	
	V 10x											
12							D	Е	L	Т	М	*
	V 10x											
13	IUA						D	Е	L	Т	М	*
13												
	V 10x						D	F	T	т	М	*
14					 			E	L	1	IVI	
	V 10x											
15		1					D	Е	L	Т	М	*
15												
	V.											
	V 10x						D	Е	L	Т	М	*
16							-					
	V 10x											
17							D	E	L	Т	М	*
			_									
	V 10-											
	. 10X	1					D	E	L	Т	М	*
18				<u> </u>			-					
	V 10x						D	E	I	т	М	*
19							ע ע	E		1	1V1	
	V 10x						<u> </u>					
		1					D	E	L	Т	М	*
20			1	ļ								
	V 10x						D	F	T	т	М	*
21								Ľ		1	111	
	V 10x											
	V 10x											

NEORSD Macroinvertebrate Field Sheet

Stream:					River N	Mile:		Year:
Location:				Project	:			
River Code:			Static	n ID:				
Drainage Area (n	mi ²):	Latituc	- le (°N)/L	ongitude (°W):			_
Site Type: WV	WH EWH (Coldwater	Lacust	uary Other:			Ecc	o-Region:
			Hester	Dendy Depl	oyment I	nforn	nation	_
Install Date:				Crew	QDC Cir	cled):		
Current at HD (f	ps):		De	pth (cm):			Pict	ures Obtained: Yes No
Replicate/Reinsta	all Date:			Crew	(QDC Cir	cled):		
Current (fps):		Depth (cm):		Re	eason:		
			Sar	npling/Retrie	eval Infor	rmatio	on	
Sampling Method	d: Hester-I	Dendy	Dipi	net Ek	xman (6x6	5)	Other:	
Sampling Date:		-	_	Crew (QD	C Circled):		
OEPA Comment	Field Codes:			_	<i>,</i>	, <u> </u>	Wa	ter Temp: °C / °F
HD Condition-	Current (fps):		Denth (cm)			Comm	ents:
	Number of H	ID Blocks	: Obtaine		·			
	Disturbed:	Yes	No	Debris: Ye	es No)		
	Silt/Solids:	None	Slight	Moderate	Heavy		Sample ID:	
Replicate	: Current (fps):	-	Depth (cm)	•		Comm	ents:
_	Number of H	ID Blocks	Obtaine	<i>d</i> :				
	Disturbed:	Yes	No	Debris: Ye	es No)		
	Silt/Solids:	None	Slight	Moderate	Heavy		Sample ID:	
Dipnet-	Time Sampl	ed (min):		X Nı	umber of (Crew:	=	Total (min):
	Start T	ime:		End Time			Sample ID:	
	Habitats Sar	npled:	Pool	Riffle Ru	un Mar	gin	Backwater	
			I	River Sampli	ng Condi	itions		
Weather:		Clear	Partly C	Cloudy O	vercast	Lig	ht Rain	Other:
Canopy (ove	er HD):	Open	7:	5 %	50 %		25 %	Closed
Flow Condit	ion:	Dry	Intermitte	ent Inters	stitial	Low	Normal	Above Normal Flood
Current Velo	ocity:	Non-det	ect	Slow	Modera	ate	Fast	
Channel Mo	rphology:	Natural	Ch	annelized	Channe	elized	(Recovered)	Impounded
Bank Erosio	n:	None		Slight	Modera	ate	Extensi	ve
Water Clarit	ty:	Clear	Mı	ıddy	Tea		Milky	Other:
Water Color		None	Gr	een	Brown		Grey	Other:
Evidence of Polli	ution:							
Potential Pollutio	on Sources:							
Comment Section	on:							
Samples Analyz	ed By:				DC #:		Deta	
Compa	ny/Entity:			Q	DC #			·

NEORSD Macroinvertebrate Field Sheet

-

\downarrow	Physical Character	ristics	
Substrate Characteristics	Predominant La	and Use (Indicate I	Left, Right or Both)
. <u> </u>	Forest	Urban	Open Pasture
10 110 second se	a ⁷⁰ z Shrub	Residential/Park	Closed Pasture
Unit R	\sim $\stackrel{\sim}{\supset}$ Old Field	Mining/Construc	tion Wetland
Bedrock	Rowcrop	Industrial	Other
Boulder			
Cobble/Rubble	Predominant Riv	narian Vegetation	Riffle Habitat
Course	Left Right	Type	Embedded: Yes No
— Gravel Fine		Large Trees	Development:
Sand		Small Trees	Extensive
a Silt		Shrubs	Moderate
Clav/Hardpan		Grass/Weeds	Sparse
		None	Absent
Post		Dinorion Width	Ausent Ausent
		Kiparian widin	Quality.
	Manain Habitat		Good Fair Poor
	Margin Habilat		D 0/
Macrophytes	Margin Quality:	Good Fai	r Poor%
Algae- Note Color	Types Present:	TT 1	
Artifacts	Root Mats	Underci	ut Banks Rip Rap
Compaction (F,M,S)	Tree Roots	Shallow	rs Bulkhead
Depth (Avg)	Woody Deb	ris Soft Cla	ıy
Width (Avg)	Macrophyte	s/Grass Oth	ner
	Biological Characteris	tics	
Overall Collection	Hal	oitat Specific Orga	nisms
<i>Est</i> Amt $(V = >151 \cdot A = 150 \cdot 101 \cdot C = 100 \cdot 11 \cdot B = 10 \cdot 1)$	Riffle: %	Specific org	
/ Porifera Bryozoa	Predominant Organis	m.	
/ / Turbellaria Oligochaeta Hirudinea	Other Common Orga	nisms [.]	
/ Isonoda Amphipoda	Density: High	h Moderate	Low
/ Decanoda Hydracarina	Diversity: High	h Moderate	Low
Enhemerontera	Diversity. Ing	ii Wioderate	Low
Baetidae	Run: 0/2		
/ / Hantaganiidaa Lantahumhidaa Caanidaa	Predominant Organis	m·	
Other	Other Common Organis	nieme:	
	Densitur High	Moderate	Low
Zygoptera, Anisoptera	Density. High	Moderate	Low
	Diversity: High	in Moderate	Low
Hemiptera	$\mathbf{D}_{\mathbf{r}} = \mathbf{I}_{\mathbf{r}}$		
/ Megaloptera, Neuroptera	$\frac{Pool}{1} \qquad \frac{1}{2} \qquad \frac$		
I richoptera	Predominant Organis	m: ·	
Hydropsychidae	Other Common Orga	nisms:	
/ Hydroptilidae, Leptoceridae	Density: High	n Moderate	Low
Other	Diversity: High	n Moderate	Low
Coleoptera			
Elimidae	Margin:		
Other	Predominant Organis	m:	
Diptera	Other Common Orga	nisms:	
Chironomidae	Density: High	h Moderate	Low
/ Tipulidae, Simuliidae	Diversity: High	n Moderate	Low
Other			
/ Gastropoda, Bivalvia	Other Notable Collections		
Other			
v= Very Abundant; A= Abundant; C= Common; R= Rare			
Field Narrative Rating.	E VG G	MG F	P VP
FILIU I VALLAUVE NAULE.		110 1	

Fie			
	River Mile:	Year:	
Station ID:		Date:	
	Station ID:	Station ID:	

Comment Section (2):

NEORSD Macroinvertebrate Field Sheet

Last Modified 05/03/21

_

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

QHEI Score: Stream & Location: RM:____Date: Scorers Full Name & Affiliation: Northeast Ohio Regional Sewer District Lat./Long.: (NAD 83 - decimal °) Office verified River Code: STORET #: /8 location D 1] SUBSTRATE Check ONLY Two substrate TYPE BOXES: Check ONE (Or 2 & average) estimate % or note every type present OTHER TYPES POOL RIFFLE BEST TYPES ORIGIN QUALITY POOL RIFFLE LIMESTONE [1] HEAVY [-2] 🗌 🗌 HARDPAN [4] BLDR /SLABS [10] TILLS [1] MODERATE [-1] Substrate BOULDER [9] SILT WETLANDS [0] □ □ MUCK [2] NORMAL [0] 🗌 🗌 SILT [2] HARDPAN [0] GRAVEL [7] □ FREE [1] EXTENSIVE [-2] SANDSTONE [0] □ □ SAND [6] RIP/RAP [0] MODERATE [-1] BEDROCK [5] (Score natural substrates; ignore Maximum NUMBER OF BEST TYPES: 4 or more [2] sludge from point-sources) 20 SHALE [-1] 3 or less [0] Comments COAL FINES [-2] 2] ///STREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest AMOUNT quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools. Check ONE (Or 2 & average) EXTENSIVE >75% [11] **UNDERCUT BANKS [1]** _ OXBOWS, BACKWATERS [1] MODERATE 25-75% [7] POOLS > 70cm [2] ____ **OVERHANGING VEGETATION [1] ROOTWADS** [1] **AQUATIC MACROPHYTES [1]** SPARSE 5-<25% [3] SHALLOWS (IN SLOW WATER) [1] ☐ NEARLY ABSENT <5% [1]</p> BOULDERS [1] LOGS OR WOODY DEBRIS [1] **ROOTMATS [1]** Cover Comments Maximum 20 3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average) SINUOSITY DEVELOPMENT **CHANNELIZATION STABILITY** EXCELLENT [7] **NONE [6]** HIGH [3] MODERATE [3] GOOD [5] \Box **RECOVERED** [4] MODERATE [2] FAIR [3] **RECOVERING** [3] LOW [2] LOW [1] Channel NONE [1] RECENT OR NO RECOVERY [1] POOR [1] Maximum Comments 20 4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream **RIPARIAN WIDTH** FLOOD PLAIN QUALITY EROSION 🗋 🗋 WIDE > 50m [4] G FOREST, SWAMP [3] CONSERVATION TILLAGE [1] D NONE / LITTLE [3] SHRUB OR OLD FIELD [2] URBAN OR INDUSTRIAL [0] **MODERATE 10-50m [3]** □ □ MODERATE [2] □ □ NARROW 5-10m [2] □ □ RESIDENTIAL, PARK, NEW FIELD [1] □ □ MINING / CONSTRUCTION [0] □ □ HEAVY / SEVERE [1] □ □ VERY NARROW < 5m [1] □ □ FENCED PASTURE [1] Indicate predominant land use(s) OPEN PASTURE, ROWCROP [0] past 100m riparian. Riparian Comments Maximum 10 5] POOL / GLIDE AND RIFFLE / RUN QUALITY **Recreation Potential** MAXIMUM DEPTH **CHANNEL WIDTH CURRENT VELOCITY** Check ONE (ONLY!) Check ONE (Or 2 & average) Check ALL that apply Primary Contact POOL WIDTH > RIFFLE WIDTH [2] □ TORRENTIAL [-1] □ SLOW [1] 🗌 > 1m [6] Secondary Contact 0.7-<1m [4] POOL WIDTH = RIFFLE WIDTH [1] VERY FAST [1] INTERSTITIAL [-1] (circle one and comment on back) □ POOL WIDTH < RIFFLE WIDTH [0] FAST [1] 0.4-<0.7m [2] INTERMITTENT [-2] 0.2-<0.4m [1] MODERATE [1] EDDIES [1] Pool □ < 0.2m [0] Indicate for reach - pools and riffles. Current Maximum Comments 12 Indicate for functional riffles; Best areas must be large enough to support a population □ NO RIFFLE [metric=0] of riffle-obligate species: Check ONE (Or 2 & average). **RIFFLE DEPTH** RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS BEST AREAS > 10cm [2] MAXIMUM > 50cm [2] STABLE (e.g., Cobble, Boulder) [2] **NONE** [2] MAXIMUM < 50cm [1] MOD. STABLE (e.g., Large Gravel) [1] BEST AREAS 5-10cm [1] LOW [1] MODERATE [0] Riffle BEST AREAS < 5cm UNSTABLE (e.g., Fine Gravel, Sand) [0] [metric=0] Comments 8 6] GRADIENT VERY LOW - LOW [2-4] ft/mi) %POOL %GLIDE: Gradien **MODERATE** [6-10] **DRAINAGE AREA** Maximum %RIFFLE %RUN: HIGH - VERY HIGH [10-6] mi²) (10

AJ SAMPLED REACH Check ALL that apply	Comment RE: Reach consistency/	s reach typical of steam?, Recreation	n/ Observed - Inferred, Other,	/Sampling observations, Concerns, Acco	ess directions, etc.
METHOD STAGE BOAT 1st-sample pass- 2nd WADE HIGH L. LINE UP OTHER NORMAL DISTANCE DRY					
□ 0.5 Km □ 0.2 Km □ 0.15 Km □ 0.15 Km □ 0.12 Km □ 0.12 Km □ 0THER □	BIAESTHETICS	D] MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE	Circle some & COMMENT	<i>ET ISSUES</i> WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPs-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H20 / TILE / H20 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY	<i>F] MEASUREMENTS</i> $\bar{\mathbf{x}}$ width $\bar{\mathbf{x}}$ depth max. depth $\bar{\mathbf{x}}$ bankfull width bankfull $\bar{\mathbf{x}}$ depth W/D ratio bankfull max. depth floodprone \mathbf{x}^2 width entrench. ratio <i>Legacy Tree:</i>

Stream Drawing:

Lake / Lacus	tuary (Lentic) (QHEI Field Sł	neet Ohio	Environmental Protection Agency	QHEI Score:	
RIVERCODE	RIVERMILE	WAT	ERBODY	DISTA	ANCE ASSESSED (m)	
DATE						
SCORER	LAT	LONG	COMMEN	IT		
1] SUBSTRATE (Ch	eck ONLY Two Substrate	TYPE BOXES; Estin	nate % or note every	type present);	LAKE: LACUSTUAR	Y:
			Check ONE (or 2 & A)	IN (ERAGE) (CheckONE (or 2 & AVERAGE)	
			- D-LIMESTONE [1]	SLT:	J-SILTHEAVY [2]	Substrate
					SILT MODERATE [-1]	
GRAVEL [7]		T [2]			J-SILT NORMAL [0]	
				╔╢╟╺╺╺╺╺╺╺		Max 20
NOTE: Japara sludga li	pet originator, from point so	172.05		" SLT [
score on natural substr	ates		-HARDPAN [0]	ORIGIN:	J-ORGANIC [1]	
NUMBER OF SUBSTR	ATE TYPES	[2] ŋ	U-SHALE[-1] U-COAL/ORE[-2]		J-NONE[1]	
COMMENTS:						
2] COVER TYPES -OFF-SHORE SAND I -OVERHANGING VEC -SHALLOWS (ON BE -ROOTMATS [1] COMMENTS:	<u>TYPE:</u> BARS [4] -DEEPWAT BETATION [1] -ROOTWAD ACH) [1] -BOULDER -SAND BEA	(Check All That Apply) ER>1 M[1] □-WETLA DS[1] □-SUBME S[1] □-LOGS (CH[1] □-GRAVE	ND POOLS [1] RGED AQUATIC VEG. [DRWOODY DEBRIS [1] L BEACH [1]	AMOUNT: (Ch D-EXTENSIVE D-MODERATE D-SPARSE 5-2 D-NEARLY AB	eck ONLY One or check2 and >75% [9] 25-75% [7] 5% [3] SENT <5% [1]	AVERAGE) Cover
					······································	
SHORE SINUOSITY SHORE SINUOSITY HGH [2] HODERATE [4] HONE [1] HORE to BOTTOM SI SHORE to BOTTOM SI	DEVELOPMENT DEVELOPMENT DEVELOPMENT D-EXCELLENT[6] D-GOOD [5] D-FAIR[3] D-FAIR[3] D-FOOR[1] OPEMORPHOLOGIES D-SLOPE >45 deg. [2] D-SLOPE 90 deg. [0] AND BANK EROSION (0)	MODIFICATION □-NONE [7] □-RECOVERED [5] □-RECOVERING [3] □-RECENTORNO RECOVERY [1] AVERAGE DEPTH ((□-<50 cm [0] □-<50 -<100 cm [1] □->200 -4 00 cm [3] □->200 -4 00 cm [3] Check OVE box PER bank	STABLITY →HIGH [3] →MODERATE [2] →MODERATE [2] →LOW [1] of 5 measures) → 400 - 500 cm [4] → 500 - 900 cm [2] → 900 cm [1] or 2 and AVERAGE	MODIFICATION □- CEMENTE □-RAILROAD □-RAILROAD □-RAILROAD □-RAILROAD □-TWO SIDE MODIFICATI □-SHP CHAN Shore Rig	NS OF SAMPLED SHORE D[-1] I-STEEL BU D[1] I-STEEL BU D[1] I-STEEL BU D[1] I-STEEL BU TIES [-1] I-DIKES [-1] [-1] I-BANK SHAL CHANNEL I-WOOD PILL IONS [-1] INEL [-2] INEL [-2] INEL [-2]	IKHEADS [2] PING [-1] NGS [1] Shore Line Max 20 Lake
RIPARIAN WIDTH	L R Most Predomin	ORE LINE QUALITY (PA) ant Per Bank)	ST 100 FOOT RIPARIAN	Ū	BANK EROSION	 .
	50 m [3] [2] [3] [4 5 m [1] [4 6 7 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	VETLAND, LAKE [3] ROLD FIELD [2] , ORCHARD [2] ASTURE [1] IAL, PARK, NEW FIELD [CONSERVATI CONSERVATI	ION TILLIAGE [1] IDUSTRIAL [0] RE, ROWCROP [0] STRUCTION [0] AND [0]		Riparian 31 Max 10
COMMENTS	<u> </u>		<u> </u>		······	
5] AQUATIC VEGET (Score all for observed abu	ATION QUALITY: PLAN Indance: ABUNDANT = [3]; CO	T SPECIES OBSERVI MMON = [5]; FEW = [1]; UN	<u>ED</u> (Sum All Scores) ♦COM MON = [0])		NO AQUATIC VEGETATI	ON = 0
-Pond Lilles (NY -Pond Weed (PC	MPHAEA)Se DTAMOGETON)BL	edge (CYPERACEAE) Ilrush (SCIRPUS)	-Wild Celery (V -Waterweed (El	ALLISNERIA) LODEA)	Wild Rice (ZIZANIA)	Vegetation
(Score all for observed abu	ndance: ABUNDANT = [-2]; CC	MMON = [-1]; FEW = [0])				_ (_)]
-Puple Loosest	rifeReed Grass	-Euraslan Milfoli	Cattails	Algae (mats) _	-Algae (planktonic)	Max 30

WATERBODY MEASUREMENTS	AVERA	ge width:	AVERAGE DEPTH:	Maxim	num Depth:	
Second Sampling Pass: Third Sampling Pass:					Subjective Rating (1 – 10) Photos:	Aesthetic Rating (1-10)
Zebra Mussel/Quagga Mussel Co First Sampling Pass:	Gear	>60%	0 □-25->10% □-<10 Water Clarity	0->1% □-1-0% Wave Height		

NEORSD Surface Water Condition Sampling Field Data Form

Stream:		Date:		Co	ollectors:		
Gage Station and ID	:		I	Daily Mean	Discharge:		ft ³ /sec
Was this sample take	n during or follo	wing a wet w	veather eve	ent?	YES / N	0	
Water Quality Meters	Used:						
Time (hrs):		River M	ile (Site):				
<u>Weather:</u> Clear Steady Rain	Partly Cloudy Heavy Sn	Overcast low Melt	t Light Other	Rain/Shov	vers Hea	vy Rain	
Flow: Dry Int	ermittent	Minimal	Baseline/I	Normal	Elevated	Flood	
HD Status:	OK	Other:					
<u>Color:</u> Clear	Mud	dy	Tea	Milky	Othe	er:	
Odor: Normal	Petroleum	Anaero	obic	Sewage	Chemical	Other:	
Surface Coating:	None	Foam	Oily	Scum	Other:		
Field Parameters:	Conductivity	(µmhos/cm):			Sp. Cond. (µm	hos/cm):	
	Dissolved Oxy	ygen (mg/L):			D.O.	(%):	
	Temp	perature (°C):			pH (s	.u.):	
Turbidity 1 (NTU)	:	Turbidity 2	2 (NTU):		Average	e (NTU):	
Turbidity 1 (NTU) General Comments:	:	Turbidity 2	2 (NTU): _		Average	e (NTU):	
Turbidity 1 (NTU) General Comments:	:	Turbidity 2	2 (NTU):		Average	e (NTU):	
Turbidity 1 (NTU) General Comments: Reporting sig figs: (Cond	and DO% - 1) (J	Turbidity 2 pH, DO mg/I	2 (NTU):	or/BGA-PC	Average	0.01)	
Turbidity 1 (NTU) General Comments: Reporting sig figs: (Cond Time (hrs):	and DO% - 1) (j	Turbidity 2 pH, DO mg/I River Mi	2 (NTU):	pr/BGA-PC	Average	9.01)	
Turbidity 1 (NTU) General Comments: Reporting sig figs: (Cond Time (hrs): <u>Weather:</u> Clear Steady Rain	and DO% - 1) (j Partly Cloudy Heavy Sn	Turbidity 2 pH, DO mg/I River Mi Overcast	2 (NTU):	p <mark>r/BGA-PC</mark> Rain/Shov	Average - 0.1) (Temp- (vers Hea	9.01) vy Rain	
Turbidity 1 (NTU) General Comments: Reporting sig figs: (Cond Time (hrs): <u>Weather:</u> Clear Steady Rain <u>Flow:</u> Dry Int	and DO% - 1) (j Partly Cloudy Heavy Sn ermittent	Turbidity 2 pH, DO mg/I River Mi Overcast ow Melt Minimal	2 (NTU):	or/BGA-PC Rain/Shov r: Normal	Average - 0.1) (Temp- (vers Hea Elevated	0.01) Vy Rain Flood	
Turbidity 1 (NTU) General Comments: Reporting sig figs: (Cond Time (hrs): <u>Weather:</u> Clear Steady Rain <u>Flow:</u> Dry Int <u>HD Status:</u>	and DO% - 1) (j Partly Cloudy Heavy Sn ermittent	Turbidity 2 pH, DO mg/I River Mi Overcast tow Melt Minimal Other:	2 (NTU):	o <mark>r/BGA-PC</mark> Rain/Shov r: Normal	Average - 0.1) (Temp- (vers Hea Elevated	9.01) vy Rain Flood	
Turbidity 1 (NTU) General Comments: Reporting sig figs: (Cond Time (hrs): <u>Weather:</u> Clear Steady Rain <u>Flow:</u> Dry Int <u>HD Status:</u> <u>Color:</u> Clear	and DO% - 1) (j Partly Cloudy Heavy Sn ermittent 1 OK 0 Mude	Turbidity 2 pH, DO mg/I River Mi Overcast tow Melt Minimal Other: dy	2 (NTU):	o <mark>r/BGA-PC</mark> : Rain/Shov r: Normal Milky	Average - 0.1) (Temp- (vers Hea Elevated Othe	0.01) vy Rain Flood er:	
Turbidity 1 (NTU) General Comments: Reporting sig figs: (Cond Time (hrs): <u>Weather:</u> Clear Steady Rain <u>Flow:</u> Dry Int <u>HD Status:</u> <u>Color:</u> Clear <u>Odor:</u> Normal	and DO% - 1) (j Partly Cloudy Heavy Sn ermittent I OK O Mude Petroleum	Turbidity 2 pH, DO mg/I River Mi Overcast ow Melt Minimal Other: dy Anaero	2 (NTU): 	or/BGA-PC Rain/Show r: Normal Milky Sewage	Average - 0.1) (Temp- (vers Hea Elevated Othe Chemical	0.01) vy Rain Flood er: Other:	
Turbidity 1 (NTU) General Comments: Reporting sig figs: (Cond Time (hrs): <u>Weather:</u> Clear Steady Rain <u>Flow:</u> Dry Int <u>HD Status:</u> <u>Color:</u> Clear <u>Odor:</u> Normal <u>Surface Coating:</u>	and DO% - 1) (j Partly Cloudy Heavy Sn ermittent OK OK Mud Petroleum	Turbidity 2 pH, DO mg/I River Mi Overcast ow Melt Minimal Other: dy Anaero Foam	2 (NTU): , and Chlo ile (Site): t Light Other Baseline/I Tea obic Oily	or/BGA-PC Rain/Show r: Normal Milky Sewage Scum	Average - 0.1) (Temp- 0 vers Hea Elevated Othe Chemical Other:	0.01) vy Rain Flood er: Other:	
Turbidity 1 (NTU) General Comments: Reporting sig figs: (Cond Time (hrs): <u>Weather:</u> Clear Steady Rain <u>Flow:</u> Dry Int <u>HD Status:</u> <u>Color:</u> Clear <u>Odor:</u> Normal <u>Surface Coating:</u> <u>Field Parameters:</u>	and DO% - 1) (j Partly Cloudy Heavy Sn ermittent 1 OK 0 Mud Petroleum None 1 Conductivity	Turbidity 2 pH, DO mg/I River Mi Overcast ow Melt Minimal Other: dy Anaero Foam (µmhos/cm):	2 (NTU): 	or/BGA-PC : Rain/Show r: Normal Milky Sewage Scum	- 0.1) (Temp- (vers Hea Elevated Other Chemical Other: Sp. Cond. (µm	e (NTU): 0.01) vy Rain Flood er: Other: hos/cm):	
Turbidity 1 (NTU) General Comments: Reporting sig figs: (Cond Time (hrs): <u>Weather:</u> Clear Steady Rain <u>Flow:</u> Dry Int <u>HD Status:</u> <u>Color:</u> Clear <u>Odor:</u> Normal <u>Surface Coating:</u> <u>Field Parameters:</u>	and DO% - 1) (j Partly Cloudy Heavy Sn ermittent 1 OK 0 Petroleum None 1 Conductivity Dissolved Ox	Turbidity 2 pH, DO mg/I River Mi Overcast ow Melt Minimal Other: dy Anaero Foam (µmhos/cm): ygen (mg/L):	2 (NTU): , and Chlo ile (Site): t Light Other Baseline/I Tea obic Oily	or/BGA-PC : Rain/Show r: Normal Milky Sewage Scum	Average - 0.1) (Temp- (vers Hea Elevated Other Chemical Other: Sp. Cond. (µm D.O.	e (NTU): 0.01) vy Rain Flood er: Other: hos/cm): (%):	
Turbidity 1 (NTU) General Comments: Reporting sig figs: (Cond Time (hrs): <u>Weather:</u> Clear Steady Rain <u>Flow:</u> Dry Int <u>HD Status:</u> <u>Color:</u> Clear <u>Odor:</u> Normal <u>Surface Coating:</u> <u>Field Parameters:</u>	and DO% - 1) (j Partly Cloudy Heavy Sn ermittent 1 OK 0 Petroleum None 1 Conductivity Dissolved Oxy Temp	Turbidity 2 pH, DO mg/I River Mi Overcast ow Melt Minimal Other: dy Anaero Foam (µmhos/cm): ygen (mg/L): perature (°C):	2 (NTU):	or/BGA-PC : Rain/Show r: Normal Milky Sewage Scum	- 0.1) (Temp- 0 - 0.1) (Temp- 0 vers Hea Elevated Other Chemical Other: Sp. Cond. (µm D.O. 0 pH (s	0.01) vy Rain Flood er: Other: hos/cm): (%):	
Turbidity 1 (NTU) General Comments: Reporting sig figs: (Cond Time (hrs): <u>Weather:</u> Clear Steady Rain <u>Flow:</u> Dry Int <u>HD Status:</u> <u>Color:</u> Clear <u>Odor:</u> Normal <u>Surface Coating:</u> <u>Field Parameters:</u> Turbidity 1 (NTU)	and DO% - 1) (j Partly Cloudy Heavy Sn ermittent 1 OK 0 Petroleum None 1 Conductivity Dissolved Oxy Temp	Turbidity 2 pH, DO mg/I River Mi Overcast ow Melt Minimal Other: dy Anaero Foam (µmhos/cm): ygen (mg/L): perature (°C): Turbidity 2	2 (NTU):	or/BGA-PC : Rain/Show r: Normal Milky Sewage Scum	- 0.1) (Temp- (- 0.1) (Temp- (vers Hea Elevated Other Chemical Other: Sp. Cond. (µm D.O. (pH (s Average	0.01) vy Rain Flood er: Other: hos/cm): (%): (%): s.u.): e (NTU):	

Appendix B. Parameter Information

Parameter	Additional Name	Test	Unit	2018/2019 Minimum Detection Limit	2018/2019 Practical Quantitation Limit
Alkalinity	Alkalinity	EPA 310.2	mg/L	6.44	16
Mercury	Hg	EPA 245.1	μg/L	0.020	0.05
Ammonia ¹	NH ₃	EPA 350.1	mg/L	0.025	0.05
Nitrite	NO2	EPA 353.2	mg/L	0.005	0.04
Nitrite + Nitrate	NO ₂ + NO ₃	EPA 353.2	mg/L	0.017	0.04
Total Kjeldahl Nitrogen	TKN	EPA 351.2	mg/L	0.276	0.75
Dissolved Reactive Phosphorus	DRP	EPA 365.1	mg/L	0.011	0.025
Low Level Dissolved Reactive Phosphorus	LLDRP	EPA 365.1	µg∕L	1.62	5
Total Phosphorus	Total-P	EPA 365.1	mg/L	0.016	0.031
Chloride	Chloride by IC	EPA 300.0	mg/L	0.97	5
Sulfate	Sulfate by IC	EPA 300.0	mg/L	1.77	5
Silvor	٨٩	EPA 200.8 ³	µg∕L	0.0239	0.25
Silver	Ay	EPA 200.8 ⁴	µg∕L	0.0399	0.5
Aluminum	A 1	EPA 200.8 ³	µg∕L	1.71	10
Aluminum	AI	EPA 200.8 ⁴	µg∕L	9.48	30
Arcopio	As	EPA 200.8 ³	µg∕L	0.311	1
Aisenic		EPA 200.8 ⁴	µg∕L	0.0828	0.5
Parium	Po	EPA 200.8 ³	µg∕L	0.102	0.25
Dallulli	Dd	EPA 200.8 ⁴	µg∕L	0.0386	0.5
Boryllium	Po	EPA 200.8 ³	µg∕L	0.0257	0.25
Derymum	Ве	EPA 200.8 ⁴	µg∕L	0.0314	0.5
Calcium	Ca	EPA 200.8 ³	µg∕L	21.5	125
Calcium	Са	EPA 200.8 ⁴	µg∕L	71	500
Codmium	Cd	EPA 200.8 ³	µg∕L	0.0282	0.25
Cauliliulii	Cu	EPA 200.8 ⁴	µg∕L	0.0483	0.5
Cabalt	<u>Ca</u>	EPA 200.8 ³	µg∕L	0.009	0.25
Copait	Co	EPA 200.8 4	µg∕L	0.0253	0.5
Characterium	6.5	EPA 200.8 ³	µg∕L	0.469	1.25
Chromium	Cr	EPA 200.8 4	µg∕L	1.42	5
		EPA 200.8 ³	µg∕L	0.177	0.5
Copper	Cu	EPA 200.8 ⁴	µg∕L	0.0798	0.5
	-	EPA 200.8 ³	µg∕L	3.175	12.5
Iron	Fe	EPA 200.8 ⁴	µg∕L	41.5	150
Deterel	IZ.	EPA 200.8 ³	µg∕L	28.75	125
Potassium	ĸ	EPA 200.8 ⁴	µg∕L	165	1250

				2018/2019	2018/2019
Parameter	Additional	Test	Unit	Minimum	Practical
	Name			Detection	Quantitation
		FPA 200.8 ³	ua/l	4 095	LIMIT 62.5
Magnesium	Mg	EPA 200.8 ⁴	μg/L	12.0	100
		EPA 200.8 ³	μg/L	0.705	2.5
Manganese	Mn	EPA 200.8	μg/ L	0.703	2.5
		EPA 200.8	μg/ L	0.0303	0.5
Molybdenum	Мо	EPA 200.8	μg/L	0.119	0.25
		EPA 200.8 ³	μg/L	0.0490	125
Sodium	Na	EPA 200.8	μg/ L	27.25	125
		EPA 200.8	μg/L	49.9	250
Nickel	Ni	EPA 200.8	µg/L	0.0745	0.5
		EPA 200.8	μg/L	0.0410	0.5
Lead	Pb	EPA 200.8	µg/L	0.139	0.5
		EPA 200.8	µg/L	0.0287	0.5
Antimony	Sb	EPA 200.8	µy/L	0.109	2.5
		EPA 200.8	µg/L	0.0296	0.5
Selenium	Se	EPA 200.8	µg/L	0.307	1
		EPA 200.8	µg/L	0.0522	0.5
Tin	Sn	EPA 200.8	µg/L	5	20
		EPA 200.8	µg/L	0.714	5
Strontium	Sr	EPA 200.8 °	µg/L	0.0466	0.5
		EPA 200.8 ⁴	μg/L	0.0602	0.5
Titanium	Ti	EPA 200.8 °	μg/L	0.059	1
		EPA 200.8 ⁴	μg/L	0.176	0.5
Thallium	ТІ	EPA 200.8 ³	μg/L	0.0545	0.25
		EPA 200.8 ⁴	µg∕L	0.341	1
Vanadium	V	EPA 200.8 ³	µg∕L	0.258	2.5
		EPA 200.8 ⁴	µg/L	1.03	5
Zinc	Mo Na Ni Pb Sb Sc Sn Sr Ti Ti Tl V Zn Total Metals (calc.) Hardness (calc.)	EPA 200.8 ³	µg∕L	2.48	5
		EPA 200.8 ⁴	µg∕L	0.554	2
Total Metals	Total Metals (calc.)	EPA 200.8	µg/L	μg/L = (Cr μg/L) μg/L)+()+(Cu μg/L)+(Ni Zn μg/L)
Hardness	Hardness	SM 2340B ²	ma/L	CaCO3 mg/I	_ = (2.497*Ca
	(calc.)			mg/L)+(4.1	18*Mg mg/L)
		SM9223			
Escherichia coli	E. coli	Colilert QT	IVIPIN7 TOOM	1 MPN	1 MPN
		Hour)	L		
Chlorophyll a	Chlorophyll a	EPA 445.0	μg/L	0.334	1
Chemical Oxygen	005			0.1	22
Demand	COD	EPA 410.4	mg/L	8.4	20

Parameter	Additional Name	Test	Unit	2018/2019 Minimum Detection Limit	2018/2019 Practical Quantitation Limit
Biological Oxygen Demand	BOD	SM 5210 ²	mg/L	2	N/A
Total Solids	TS	SM 2540 B ²	mg/L	1	5
Total Suspended Solids	TSS	SM 2540 D ²	mg/L	0.5	1
Total Dissolved Solids	TDS	SM 2540 C ²	mg/L	1	5
Turbidity **		EPA 180.1	NTU	0.1	0.2
Field Parameter	Additional Name	Test		(Value Reported	in)
рН		SM 4500 H+B		s.u.	
Conductivity		SM 2510A ²		µs∕cm	
Specific Conductivity		SM 2510B ²		µs∕cm	
Dissolved Oxygen	DO	SM 4500-0 G ²		mg/L	
Temperature	Temp	EPA 1701.1 2		°C	
Turbidity **		EPA 180.1		NTU	

¹ Listed MDL/PQL is for undistilled samples. Any samples that require distillation will have a MDL = 0.065 mg/L, PQL = 0.150 mg/L

² <u>Standard Methods for the Examination of Water and Wastewater</u>, Method approved by Standard Methods Committee, 1997. Editorial revisions, 2011.

³ MDLs and PQLs specific to ICP-MS Xseries instrument

⁴ MDLs and PQLs specific to ICP-MS qNOVA instrument

** Turbidity will either be completed in the field or at the laboratory.

Appendix C. Meter Specifications

The YSI 600XL and 600XLM

YSI 600XL and 600XLM Sondes

Measure multiple parameters simultaneously

The YSI 600XL and YSI 600XLM compact sondes measure eleven parameters simultaneously:

Temperature Conductivity Specific Conductance Salinity Resistivity TDS pH ORP Depth or Level Rapid Pulse[™] DO (% and mg/L)

Connect with Data Collection Platforms

Either sonde can easily connect to the YSI 6200 DAS (Data Acquisition System), YSI EcoNet[™] or your own data collection platform, via SDI-12 for remote and real-time data acquisition applications.

Economical Logging System

The YSI 600XLM is an economical logging system for long-term, *in situ* monitoring and profiling. It will log all parameters at programmable intervals and store 150,000 readings. At one-hour intervals, the instrument will log data for about 75 days utilizing its own power source. The 600XL can also be utilized in the same manner with user-supplied external power.

- Either sonde fits down 2-inch wells
- Horizontal measurements in very shallow waters
- Stirring-independent Rapid Pulse* dissolved oxygen sensor
- Field-replaceable sensors
- Easily connects to data collection platforms
- Available with detachable cables to measure depth up to 200 feet
- Compatible with YSI 650 Multiparameter Display System
- Use with the YSI 5083 flow cell for groundwater applications

Economical, multiparameter sampling or logging in a compact sonde

Sensor performance verified*

The $6820 \lor 2$ and $6920 \lor 2$ sondes use sensor technology that was verified through the US EPA's Environmental Technology Verification Program (ETV). For information on which sensors were performance-verified, turn this sheet over and look for the ETV logo.

To order, or for more info, contact YSI Environmental.

+1 937 767 7241 800 897 4151 (US) www.ysi.com

YSI Environmental +1 937 767 7241 Fax +1 937 767 9353 environmental@ysi.com

Endeco/YSI +1 508 748 0366 Fax +1 508 748 2543 systems@ysi.com

SonTek/YSI +1 858 546 8327 Fax +1 858 546 8150 inquiry@sontek.com

YSI Gulf Coast +1 225 753 2650 Fax +1 225 753 8669 environmental@ysi.com

YSI Hydrodata (UK) +44 1462 673 581 Fax +44 1462 673 582 europe@ysi.com

YSI Middle East (Bahrain) +973 1753 6222 Fax +973 1753 6333 halsalem@ysi.com

YSI (Hong Kong) Limited +852 2891 8154 Fax +852 2834 0034 hongkong@ysi.com

YSI (China) Limited +86 10 5203 9675 Fax +86 10 5203 9679 heijing@ysi-china.com

YS1 Nanotech (Japan) +81 44 222 0009 Fax +81 44 221 1102 nanotech@ysi.com

ROX and Rapid Pulse are trademarks and FellWatch, Pure Data for n Healthy Planet and Who's Minding the Planet? are registered trademarks of YSI Incorporated.

© Printed in USA 0107 E55-01

Sensor wild lated with the FUV lagstwere submitted in the FUV programment the VM effects. It is immittees with be just as more derivation set of VM as MMP774451 for the FUV verefulance impacts of the TV means we have a more and we have impact for other FV means we have an energy reported or conclusions of this product new down is made any replace to set of the set

YS1 incorporated Who's Minding the Planet²

YSI 600XL & 600XLM Sensor S	pecifications
-----------------------------	---------------

	Range	Resolution	Accuracy
Dissolved Oxygen % Saturation 6562 Rapid Pulse" Sensor*	0 to 500%	0,1%	0 to 200%: ±2% of reading or 2% air saturation, whichever is greater; 200 to 500%: ±6% of reading
Dissolved Oxygen mg/L ETV 6562 Rapid Pulse" Sensor*	0 to 50 mg/L	0.Q1 mg/L	0 to 20 mg/L: ± 0.2 mg/L or 2% of reading, whichever is greater; 20 to 50 mg/L; ±6% of reading
Conductivity" 6560 Sensor [#] ETV	0 to 100 mS/cm	0.001 to 0.1 mS/cm (range dependent)	±0.5% of reading + 0.001 m\$/tm
Salinity	0 to 70 ppt	0.01 ppt	±1% of reading or 0.1 ppt, whichever is greater
Temperature 6560 Sensor* ETV	-5 to +50°C	0.01°C	±0.15°C
pH 6561 Sensor [*] ETV	Ø to 14 units	0.01 init	±0.2 unit
ORP	-999 to +999 mV	0.1 mV	±20 mV
Depth & Level Medium Shallow Vented Level	0 to 200 ft, 61 m 0 to 30 ft, 9.1 m 0 to 30 ft, 9.1 m	0.001 ft, 0.001 m 0.001 ft, 0.001 m 0.001 ft, 0.001 m	±0,4 ft,±0.12 m ±0,06 ft,±0.02 m ±0,01 ft, 0.003 m

Report outputs of specific conductance (conductivity corrected to 25° C), resistivity, and total dissolved solids are
also provided. These values are automatically calculated from conductivity according to algorithms found in Shindard
Methods for the Examination of Water and Wastewater (ed 1989)

YSI 600XL 8	YSI 600XL & 600XLM Sonde Specifications		
Medium		Fresh, set or polluted water	
Temperature (Detroting Storage	-5 to +50°C -10 to +60°C	
Communications		RS-232, SDI-12	
Software	2.5	EcoWatch*	
Dimensions 400xL 1 400xLM	Diameter tength Weight	1.65 in, 4.19 cm 1.65 in, 4.9 cm 16 in, 40.6 cm 21.3 in, 54.1 cm 1.3 lbs, 0.59 kg 1.5 lbs, 0.69 kg	
Power Internøl (d	External XXXXM only)	12 V DC 4 AA-size alkaline batteries	

HI 98129 Combo pH/EC/TDS/Temperature Tester with Low Range EC

Description

The HI 98129 Combo waterproof tester offer high accuracy pH, EC/TDS and temperature measurements in a single tester! No more switching between meters for your routine measurements. The waterproof Combo (it even floats) has a large easy-to-read, dual-level LCD and automatic shut-off. pH and EC/TDS readings are automatically compensated for the effects of temperature (ATC). This technologically advanced tester has a replaceable pH electrode cartridge with an extendable cloth junction as well as an EC/TDS graphite electrode that resists contamination by salts and other substances. This gives these meters a greatly extended life. Your tester no longer needs to be thrown away when the pH sensor is exhausted.

The EC/TDS conversion factor is user selectable as is the temperature compensation coefficient (ß). Fast, efficient, accurate and portable, the Combo pH, EC/TDS and temperature tester brings you all the features you've asked for and more!

Range	pН	0.00 to 14.00 pH
Range	EC	0 to 3999 µS/cm
Range	TDS	0 to 2000 ppm
Range	Temperature	0.0 to 60.0°C / 32 to 140.0°F
Resolution	pН	0.01 pH
Resolution	EC	1 µS/cm
Resolution	TDS	1 ppm
Resolution	Temperature	0.1°C / 0.1°F
Accuracy	pH	±0.05 pH
Accuracy	EC/TDS	±2% F.S.
Accuracy	Temperature	±0.5°C / ±1°F
Temperature		pH: automatic; EC/TDS: automatic with ß adjustable
Compensation		from 0.0 to 2.4% / °C
Calibration	pН	automatic, 1 or 2 points with 2 sets of memorized
		buffers
		(pH 4.01 / 7.01 / 10.01 or 4.01 / 6.86 / 9.18)
Calibration	EC/TDS	automatic, 1 point
TDS Conversion Facto	br	adjustable from 0.45 to 1.00
pH Electrode		HI 73127 (replaceable; included)
Environment		0 to 50°C (32 to 122°F); RH max 100%
Battery Type / Life		4 x 1.5V / approx. 100 hours of continuous use;
		auto-off after 8 minutes of non-use
Dimensions		163 x 40 x 26 mm (6.4 x 1.6 x 1.0")
Weight		100 g (3.5 oz.)

Specifications

```
HACH
HQ30d Portable pH, Conductivity, Dissolved Oxygen (DO), ORP, and ISE Multi-
Parameter Meter
                                         Product # HQ30D53000000 Quantity
USD Price: $700.00
                                                                                                                              ***** 5/5 1
                                                                                                                              Read 1 minlow White a review Follow this product
Portable meter measures critical water quality parameters - without the need for multiple
Engle lingut sharmel for Bastele measurement of pH Centerium Votesofved Oxygen (DO), BOD, ORP Ammonia,
Ammonium Fixantia Chilorida Sodium, and temperature any intelliCAL <sup>ne</sup> smart probe
Intuitive user interface for aimple operation and accurate results
Guided calendary and check standard reviews induce calenation error. Stabilizat
ensure that you can trust the accuracy of the results
                                                                                            on eleta and visual moasurement lock
Trust your measurements - IntelliGAL<sup>Tes</sup> smart probes store all calibrations in the probe
Calibrase halory since saids and easy charge out of probes whold re-adapting. The HOd<sup>Te</sup> smart system mean
number, current calibration dots, user D, sample D time, and dise automatically in the dots log as complete GLP
traceadally.
Designed for demanding conditions
Rugged waterprod (IPG7) meter provides worry-the settable speration in lab or fold environme
Convenient kit includes everything you need to start testing
Mean kit includes 4 AA batteries quick-start guide, user manual and documentation CD
  Specifications
   AC and USB Operation
                                                optional
   Automatic Buffer Recognisen
UPAC 1 679 4 005 7 000 19 D12, 12 45
DIN 1 09 4 65, 0323
User-defined custam buffer sets
   Barometric Pressure Measurement For externatic compensation of DO when using an LDO or LBOD probe
   Battery Requirements
                                              4 44
   Benchtop
                                              with stand
   8005/CB00 resolution
                                               Available when used with Hach WIMS BOD Manager software
   Cable resistance correction Digital - not needed
   Calibration curves display
                                              Calibration summary data logged and displayed
   Calibration Intervals/Alerts/Raminder 2 hours to 7 days
   Compliance
                                              CE WEEE
   Conductivity Accuracy
                                               1 0 5 % from (1µS/cm 200 mS/cm)
   Conductivity measurement
                                              5 different stability modes
   Conductivity Measurement Range 0 01 µS/cm to 200 mS/cm
                                              0 01 µS/cm with 2 digits
   Conductivity resolution
   Custom Calibration Standards User-defined standard sets
                                          Download via USB connection to PC or flash stick
Automatically transfer entire data log or as readings are taken
   Data Export.
   Data Memory
                                               500 results
   Digital (Intelligent) electrode inputs 2
    Dimensions (H x W x D)
                                               7 8 in x 3 7 in x 1 4 in 197 mm x 95 mm x 36 mm)
                                                Display readings from one or two probes
Bimilianeous readings from two probes (404d ordy)
pH pH, wt. Venapreature
Conductivity Conductivity TUS salarity restativity languesture
LDO disadred oxyges, pressure, lamperature
LBOD disadred oxyges, pressure, lamperature
ORPR/redark with importative
Sodium. Sodium, mV, temperature
    Display
   Display Lock Function
                                                 Continuous measurement or press to read mode available with averaging function for LDO measurement.
                                                Ancastni ta LLO measurement.
240 ± 160 pick (Dicklay readings form onle ar two probes
pH, pH, mV, temparature
Conductivity Conductivity, TDS satinity realizitivity temperature
DD disactivity carger, pressure, temperature
Schulm, Sodium, mV, temperature
    Display Typo
   DO Measurement Range
                                               0 01 to 20 mo/L (0 to 200%)
   DO Resolution
                                               0 01 mg/L
   Fixed Buffer Selecton
                                                 (UPAC standards
(DIN 19266 or Technical buffer D.N 19257) or 4-7-10 series or user
                                                 M12 digital 1)
for inteliCAL probes
   Inputs
   Interface Languages
                                                13**
    Internal Data Storage
                                                 500
    IP Rating
                                                1P67
   Languages:
                                                 English, French, German (talian Spanish, Danish Dutch Pollah
Portuguese Turkish, Sweedish Czech, Russian
    mV Accuracy
                                                ±01mV
    mV Measurement at Stable Reading 5 (auto) stabilization sottings
    mV Resolution
                                                0.1 mV
    Operating Error Messages
                                                 Test messages displayed
    Operating Humidsty
                                               90 % relative humility ( non-condensing
   Operating Interface
                                              Keyped
   Operating Temperature
                                               5 to 45 °C
   ORP Electrod - Calibration
                                               Predefined ORP standards ( notuding Zobell's statution)
   Outputs
                                               USB to PC / flash stick
   PC Data Transfer Software
                                               Included
    pH Measurement at stable reading 5 stabilization settings
    Printer
                                               Optional accessory
   Salinity Resolution
                                               0 01 ppl
    Warranty
                                               3 years
    Water Resistance
                                               Meter Cecing 1 meter submersion for 30 minutes (iP67)
    Weight.
                                               0 74 lbs (0 335 kg)
```

2100P and 2100P IS Portable Turbidimeter

Features and Benefits

Laboratory Quality in a Portable Unit

The Hach 2100P and 2100P IS Portable Turbidimeters offer a level of performance previously possible only with laboratory instruments. Microprocessor-controlled operation and Hach's unique Ratio[™] optics bring great accuracy, sensitivity, and reliability to field and in-plant testing.

Two Models for Specific Requirements

- 2100P Turbidimeter—Get fast, accurate turbidity testing in the field or the lab, over a wide range of samples. Compliant with USEPA Method 180.1 design criteria.
- 2100P IS Turbidimeter—Designed to meet international standards that mandate measurement using an LED light source.

Two-detector Optical System

The two-detector optical system compensates for color in the sample, light fluctuation, and stray light, enabling analysts to achieve laboratory-grade performance on a wide range of samples, even under difficult, onsite conditions.

The Hach 2100P and 2100P IS Portable Turbidimeters bring laboratory-level performance on-site, offering fast, accurate results and the ease-of-use analysts demand in the field. With a measurement range of 0 to 1000 NTU and a resolution of 0.01 NTU, the 2100P turbidimeter is ideal for regulatory monitoring, process control or field studies.

Specifications*

	2100P	2100P IS		
Measurement Method	Nephelometric Ratio			
Regulatory	Meets EPA Method 180.1	Meets EN ISO 7027		
Light Source	Tungsten lamp	Light-emitting diode (LED) @ 860 nm		
Range				
Automatic Range Mode	0 to 1000 NTU	0 to 1000 FNU		
Manual Range Selection	0 to 9.99, 0 to 99.9 and 0 to 1000 NTU	0 to 9.99, 0 to 99.9 and 0 to 1000 FNU		
Accuracy	±2% of reading plus stray light			
Repeatability	±1% of reading, or 0.01 NTU, whichever is greater	±1% of reading, or 0.01 FNU, whichever is greater		
Resolution	0.01 on lowest range			
Signal Averaging	Selectable on/off			
Power Requirement	4 AA alkaline batteries or optional battery eliminator			
Battery Life, Typical	300 tests with signal average mode off			
	180 tests with signal average mode on			
Operating Temperature	0 to 50°C (32 to 122°F)			
Sample Required	15 mL (0.5 oz.)			
Sample Cells	60 x 25 mm (2.36 x 1 in.) borosilicate glass with screv	60 x 25 mm (2.36 x 1 in.) borosilicate glass with screw caps		
Dimensions	22.2 x 9.5 x 7.9 cm (8.75 x 3.75 x 3.12 in.)			
Weight	0.5 kg (1.1 lb.); shipping weight 2.7 kg (6 lb.)	0.5 kg (1.1 lb.); shipping weight 2.7 kg (6 lb.)		
Warranty	2 years			

*Specifications subject to change without notice.

DW = drinking water WW = wastewater municipal PW = pure water / power IW = industrial water E = environmental C = collections FB = food and beverage

2100Q and 2100Q is Portable Turbidimeter

The Hach 2100Q and 2100Q is Portable Turbidimeters offer unsurpassed ease of use and accuracy in turbidity measurement. Only Hach offers this unique combination of advanced features, such as assisted calibration and simplified data transfer, and measurement innovation, giving you accurate results every time.

urbidimetry

Features and Benefits

Easy Calibration and Verification

Hach 2100Q and 2100Q *is* Portable Turbidimeters provide confidence your measurements are right every time. On-screen assisted calibration and verification save you time and ensure accuracy. With an easy-to-follow interface, complicated manuals are not needed to perform routine calibrations. Single-standard RapidCal[™] calibration offers a simplified solution for low level measurements.

Simple Data Transfer

Data transfer with the optional USB + Power Module is simple, flexible, and doesn't require additional software. All data can be transferred to the module and easily downloaded to your computer with a USB connection, providing superior data integrity and availability. With two different module options, you can customize connectivity and power to meet your unique needs.

Accurate for Rapidly Settling Samples

The Hach 2100Q Portable Turbidimeter incorporates an innovative Rapidly Settling Turbidity[™] mode to provide accurate, repeatable measurements for difficult to measure, rapidly settling samples. An exclusive algorithm that

calculates turbidity based on a series of automatic readings eliminates redundant measurements and estimating.

Convenient Data Logging

0

Up to 500 measurements are automatically stored in the instrument for easy access and backup. Stored information includes: date and time, operator ID, reading mode, sample ID, sample number, units, calibration time, calibration status, error messages and the result.

Optical System for Precision in the Fleld

The two-detector optical system compensates for color in the sample, light fluctuation, and stray light, enabling analysts to achieve laboratory-grade performance on a wide range of samples, even under difficult site conditions.

Two Models for Specific Requirements

- 2100Q Turbidimeter—Compliant with USEPA Method 180.1 design criteria.
- 2100Q is Turbidimeter—Compliant with ISO 7027 design criteria.

Specifications*

Measurement Method

Ratio turbidimetric determination using a primary nephelometric light scatter signal (90°) to the transmitted light scatter signal.

Regulatory 2100Q: Meets EPA Method 180.1 2100Q is: Meets ISO 7027

Light Source 2100Q: Tungsten filament lamp 2100Q is: Light-emitting diode (LED) @ 860 nm

Range 0 to 1000 NTU (FNU)

Accuracy ±2% of reading plus stray light from 0 to 1000 NTU

Repeatability $\pm 1\%$ of reading, or 0.01 NTU (FNU), whichever is greater

Resolution 0.01 NTU on lowest range

Stray Light <0.02 NTU (FNU)

Signal Averaging Selectable on/off

Detector Silicon photovoltaic

Reading Modes (user selectable) Normal (Push to Read) Signal Averaging Rapidly Settling Turbidity

Data Logger 500 records

Power Requirement 110-230 Vac, 50/60 Hz (with Power or USB+Power Module) 4 AA alkaline batteries Rechargeable NiMH (for use with USB+Power Module) Operating Conditions Temperature: 0 to 50°C (32 to 122°F) Relative Humidity: 0 to 90% @ 30°C, 0 to 80% @ 40°C, 0 to 70% @ 50°C, noncondensing

Storage Conditions -40 to 60°C (-40 to 140°F), instrument only

Languages English, French, German, Italian, Spanish, Portuguese (BR), Portuguese (PT), Bulgarian, Chinese, Czech, Danish, Dutch, Finnish, Greek, Hungarian, Japanese, Korean, Polish, Romanian, Russian, Slovenian, Swedish, Turkish

Interface Optional USB

Instrument Enclosure Rating IP67 (closed lid, battery compartment excluded)

Protection Class Power Supply: Class II

Certification CE certified

Sample Required 15 mL (0.3 oz.)

Sample Cells 60 x 25 mm (2.36 x 1 in.) borosilicate glass with screw cap

Dimensions 22.9 x 10.7 x 7.7 cm (9.0 x4.2 x 3.0 in.)

Weight 527 g (1.16 lb) without batteries 618 g (1.36 lb) with four AA alkaline batteries

Warranty 1 year

Instrument Specifications*

EXO1 Sonde			
Ports	4 sensor ports Peripheral port: 1 power communication port		
Size	Diameter: 4.70 cm (1.85 in) Length: 64.77 cm (25.50 in)		
Weight	1.42 kg (3.15 lbs) with 4 probes, guard a	nd batteries installed	
EXO2 Sonde			
Ports	7 sensor ports (6 ports available when ce Peripheral ports: 1 power communicatio	entral wiper used) n port; 1 auxiliary expansion port	
Size	Diameter: 7.62 cm (3.00 in) Length: 71.10 cm (28.00 in)		
Weight	3.60 kg (7.90 lbs) with 5 probes, guard a	nd batteries installed	
Sondes			
Operating Temperature	-5 to 50°C		
Storage Temperature	-20 to 80°C (except 0 to 60°C for pH and	pH/ORP sensors)	
Depth Rating	0 to 250 m (0 to 820 ft)		
Communications	Computer Interface: Bluetooth wireless t Output Options: USB with signal output a	echnology, RS-485, USB Idapter (SOA); RS-232 & SDI-12 with DCP-SOA	
Sample Rate	Up to 4 Hz		
Battery Life	90 days**		
Data Memory	512 MB total memory; >1,000,000 logge	ed readings	
Sensors		Calculated Parameters	
Ammonium	ORP	Salinity	
Chloride	рН	Specific Conductance	
Conductivity	Temperature	Total Dissolved Solids	
Depth	Total Algae (Chlorophyll + BGA-PC or PE)	Total Suspended Solids	
Dissolved Oxygen	Turbidity		
Fluorescent Dissolved Organic Matter (fDOM)	Vented Level		
Nitrate			
EXO Handheld			
Size	Width: 12.00 cm (4.72 in) Height: 25.00 cm (9.84 in)		
Weight	0.71 kg (1.56 lbs) without batteries		
Operating System	Windows CE 5.0		
Operating Temperature	-10 to 50°C		
Storage Temperature	-20 to 80°C		
IP Rating	IP-67		
Data Memory	2 GB total memory; >2,000,000 data set	S	
Accessories			
Cables (vented and non-vented)	Flow cells	Sonde/sensor guard	
Carrying case	KOR software	Calibration cup	
DCP Signal Output Adapter	USB Signal Output Adapter	Anti-fouling components	
Warranty			
3 months	Replaceable reagent modules for ammo	nium, chloride, and nitrate	
1 Year	Optical DO membranes and replaceable reagent moldules for pH and pH/ORP		
2 Years	Cables; sonde bulkheads; handheld; conductivity, temperature, depth, and optical sensors; electronics base for pH, pH/ORP, ammonium, chloride, and nitrate sensors; and accessories		

* Specifications indicate typical performance and are subject to change.

Please check EXOwater.com for up-to-date information.

EXO Bluetooth modules comply with Part 15C of FCC Rules and have FCC, CE Mark and C-tick approval. Bluetooth-type approvals and regulations can be country specific. Check local laws and regulations to insure that the use of wireless products purchased from Xylem are in full compliance.

** Typically 90 days at 20°C at 15-minute logging interval; temperature/conductivity, pH/ ORP, DO, and turbidity sensors installed on EXO1; or temperature/conductivity, pH/ORP, DO, total algae, and turbidity sensors installed with central wiper that rotates once per logging interval on EXO2. Battery life is heavily dependent on sensor configuration. 10

Sensor Specifications*

Sensor	Range	Accuracy*	Response	Resolution
Ammonium ¹¹ (ammonia with pH sensor)	0 to 200 mg/L ¹	±10% of reading or 2 mg/L-N, w.i.g.	-	0.01 mg/L
Barometer	375 to 825 mmHg	±1.5 mmHg from 0 to 50°C	-	0.1 mmHg
Blue-green Algae Phycocyanin (PC) (part of Total Algae sensor)	0 to 100 RFU; 0 to 100 µg/L PC	Linearity: R ² > 0.999 for serial dilution of Rhodamine WT solution from 0 to 100 µg/mL PC equivalents	T63<2 sec	0.01 RFU; 0.01 µg/L PC
Blue-green Algae Phycoerythrin (PE) (part of Total Algae sensor)	0 to 100 RFU; 0 to 280 μg/L PE	Linearity: $R^2 > 0.999$ for serial dilution of Rhodamine WT solution from 0 to 280 µg/mL PE equivalents	T63<2 sec	0.01 RFU; 0.01 μg/L PE
Chloride ¹¹	0 to 1000 mg/L-Cl ²	±15% of reading or 5 mg/L-Cl, w.i.g.	-	0.01 mg/L
Chlorophyll (part of Total Algae sensor)	0 to 400 μg/L Chl; 0 to 100 RFU	Linearity: R ² > 0.999 for serial dilution of Rhodamine WT solution from 0 to 400 µg/L Chl equivalents	T63<2 sec	0.01 µg/L Chl; 0.01 RFU
Conductivity ³	0 to 200 mS/cm	0 to 100: ±0.5% of reading or 0.001 mS/cm, w.i.g.; 100 to 200: ±1% of reading	T63<2 sec	0.0001 to 0.01 mS/cm (range dependent)
	0 to 10 m (0 to 33 ft)	±0.04% FS (±0.004 m or ±0.013 ft)		
Depth ⁴	0 to 100 m (0 to 328 ft)	±0.04% FS (±0.04 m or ±0.13 ft)	T(2,0	0.001 m (0.001 ft)
(non vented)	0 to 250 m (0 to 820 ft)	±0.04% FS (±0.10 m or ±0.33 ft)	163<2 sec	(auto-ranging)
Vented Level	0 to 10 m (0 to 33 ft)	±0.03% FS (±0.003 m or ±0.010 ft)	-	
Dissolved Oxygen	0 to 500% air saturation	0 to 200%: ±1% of reading or 1% saturation, w.i.g.; 200 to 500%: ±5% of reading ⁵	T(2) (5 6	0.1% air saturation
Optical	0 to 50 mg/L	0 to 20 mg/L: \pm 0.1 mg/L or 1% of reading, w.i.g.; 20 to 50 mg/L: \pm 5% of reading ⁵	T63<5 sec ° ng/L: ±0.1 mg/L or 1% of . w.i.g.; 20 to 50 mg/L: ±5% of 5	
fDOM	0 to 300 ppb Quinine Sulfate equivalents (QSE)	Linearity: R ² > 0.999 for serial dilution of 300 ppb QS solution Detection Limit: 0.07 ppb QSE	T63<2 sec	0.01 ppb QSE
Nitrate ¹¹	0 to 200 mg/L-N ¹	±10% of reading or 2 mg/L-N, w.i.g.	-	0.01 mg/L
ORP	-999 to 999 mV	±20 mV in Redox standard solutions	T63<5 sec 7	0.1 mV
рН	0 to 14 units	$\pm 0.1 \text{ pH}$ units within $\pm 10^{\circ}\text{C}$ of calibra- tion temp; $\pm 0.2 \text{ pH}$ units for entire temp range ⁸	T63<3 sec ⁹	0.01 units
Salinity (Calculated from Conductivity and Temperature)	0 to 70 ppt	±1.0% of reading or 0.1 ppt, w.i.g.	T63<2 sec	0.01 ppt
Specific Conductance (Calculated from Cond. and Temp.)	0 to 200 mS/cm	±0.5% of reading or .001 mS/cm, w.i.g.	-	0.001, 0.01, 0.1 mS/cm (auto-scaling)
Temperature	-5 to 50°C	-5 to 35°C: ±0.01°C ¹⁰ 35 to 50°C: ±0.05°C ¹⁰	T63<1 sec	0.001 °C
Total Dissolved Solids (TDS) (Calculated from Conductivity and Temperature)	0 to 100,000 g/L Cal constant range 0.30 to 1.00 (0.64 default)	Not Specified	-	variable
Total Suspended Solids (TSS) (Calculated from Turbidity and user reference samples)	0 to 1500 mg/L	Not Specified	T63<2 sec	variable
Turbidity ¹¹	0 to 4000 FNU	0 to 999 FNU: 0.3 FNU or $\pm 2\%$ of reading, w.i.g.; 1000 to 4000 FNU: $\pm 5\%$ of reading 12	T63<2 sec	0 to 999 FNU: 0.01 FNU; 1000 to 4000 FNU: 0.1 FNU

All sensors have a depth rating to 250 m (820 ft), except shallow and medium depth sensors and ISEs. EXO sensors are not backward compatible with 6-Series sondes.

* Specifications indicate typical performance and are subject to change. Please check EXOwater.com for up-to-date information. Accuracy specification is attained immediately following calibration under controlled and stable environmental conditions. Performance in the natural environment may vary from quoted specification.

² 0-40°C ¹ 0-30°C w.i.g. = whichever is greater

¹0-30 C
 ³ Outputs of specific conductance (conductivity corrected to 25°C) and total dissolved solids are also provided. The values are automatically calculated from conductivity according to algorithms found in *Standard Methods for the Examination of Water and Wastewater* (Ed. 1989).

⁴ Accuracy specifications apply to conductivity levels of 0 to 100,000 μS/cm.
 ⁵ Relative to calibration gases
 ⁶ When transferred from air-saturated water to stirred deaerated water
 ⁷ When transferred from water-saturated air to Zobell solution

⁸ Within transferred from water-saturated air to Zoben solution
 ⁸ Within the environmental pH range of pH 4 to pH 10
 ⁹ On transfer from water-saturated air to rapidly stirred air-saturated water at a specific conductance of 800 µS/cm at 20°C; T63<5 seconds on transfer from water-saturated air to slowly-stirred air-saturated water.
 ¹⁰ Temperature accuracy traceable to NIST standards
 ¹¹ Celliperature accuracy traceable to the back of the standards

¹¹ Calibration: 1-, 2-, or 3-point, user-selectable ¹² Specification is defined in AMCO-AEPA Standards

FH950 Portable Velocity Meter with 20' Cable

Product #: FH950.10020 Quantity USD Price: \$4,585.00 Ships within 2 weeks

Reduce manhours 50%

The step-by-step user interface simplifies programming, delivers real-time data, and downloads directly to PC allowing a single person to take the readings and eliminating post site visit manual data transfer from logbook to PC

Automatically calculates total discharge based on USGS and ISO methods Reduces time to manually calculate and likelihood of errors

Real-time velocity graphed on color display Visualize velocity trends quickly

Lowest maintenance solution on the market Electromagnetic velocity sensor with no moving parts never requires mechanical maintenance

Lightweight, rugged portable meter

Only 1.5 pounds

What's in the box

FH950.1 System Includes:

- Portable Velocity Meter
- Electromagnetic Sensor with 20' cable
- Fabric Carrying Case
- Adjustable Meter Rod Mount
- Universal Sensor Mount
- Battery Charger with Domestic/International Plug Adapters
- USB Cable
- Lanyard
- Sensor Screw Kit
- Absorbent Wipe

Specifications

Accuracy 2:	\pm 2% of reading \pm 0.05 ft/s (\pm 0.015 m/s) through the range of 0 to 10 ft/s (0 to 3.04 ms/s); \pm 4% of reading from 10 to 16 ft/s (3.04 to 4.87 m/s)
Battery Life:	heavy typical day use; 68°F (20°C)
Display: LCD:	Color, LCD 3.5 QVGA transflective (readable in direct sunlight)
Keypad:	Alpha-numerica
Operating Temperature Range:	-20 to 55 °C
Range:	to ft/s
Resolution:	Measurement Resolution - <10: 0.001; <100: 0.01; >100: 0.1
Storage Conditions:	-20 °C to 60 °C

Appendix D. Chlorophyll a Field Form

Stream:	Collectors				
Location:	Date:				
RM:	Time:				
Lat/Long:					
Number of Rocks:	Total Area Scraped:	cm ²			
		Diameter to Area Conversion			
Diameter of individual scrape	Area of individual scrape	Diameter (cm) Area (cm2)			
1	1	1.6 2.011			
2	2	1.7 2.27			
3	3	1.8 2.545			
4	4	1.9 2.835			
5	5	2.0 3.142			
6	6	2.1 3.464			
7	7	2.2 3.801			
8	8	2.3 4.155			
9	9				
10	10	Total Sample Volumeml			
11	11	Filter 1 LABLynx ID			
12	12	Volml			
13	13				
14	14	Filter 2 LABLynx ID			
15	15	Volml			
16	16				
17	17	Filter 3 LABLynx ID			
18	18	Volml			
19	19				
20	20				
21	21	Water Column Chlorophyll Sample			
22	22	Filter 1 LABLynx ID			
23	23	Volml			
24	24				
25	25	Filter 2 LABLynx ID			
	Total:	Volml			
		Filter 3 LABLynx ID			
		Volml			

NEORSD Chlorophyll a Sampling Field Sheet

Flow:	None	Low	Normal	Elevated	High
Turbidity: *Explain	Clear	Low	Moderate*	High*	
Sky:	Overcast	Cloudy	Partly Cloudy	Mostly Clear	Clear
Canopy:	Open	Mostly Open	Partly Closed	Closed	
Riparian	None	Narrow L R	Moderate L R	Wide L R	

Downstream Channel Direction	Record two most predominate substrates with an X, and check
0° 20°	all present.
330° N 30	
	Riffle Run Reach
300°	Boulder/Slabs
I	Boulder/Slabs
270° – W E – 90°	Cobble
-	Gravel
	Sand
240° 120°	Silt
	Hardpan
210° 7 5 150°	Detritus
180°	Artificial
Clinometer	Substrate Origin
	LimestoneTillsRip-rap
Left Bank°	Sandstone Shale Wetlands
Right Bank°	LacustrineHardpanCoal Fines
Left Dept	
Pight Bank °	Sill Heavy Moderate Normal None
Left Bank°	Embeddedness
Right Bank°	ExtensiveModerateNormalNone
Stream Widths	
mmm	
Notes:	

Length of Reach: _____m

Stream Drawing

Appendix E. Laboratory Certifications

State of New Hampshire Environmental Laboratory Accreditation Program Awards

05

PRIMARY NH ELAP ACCREDITATION

to

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES of

CUYAHOGA HEIGHTS, OH

For the matrix, method and analytes listed on the latest Analyte List in accordance with the provisions on the 2009 TNI Standards and Env-C 300.

Certificate Number: 223821 *Effective Date:* 12/1/2021 *Expiration Date:* 11/30/2022 *Laboratory ID:* 2238

Bill Hall NH ELAP Program Manager

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST

ANALYTE LIST NUMBER: 223821-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES

4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

Analyte Code		Analyte Name	Effective Date	Expiration Date	Matrix	Category A	ccr. Type
Method Code: 202114	43	Method Ref: SM 9223 B (COLILERT® QUANTI-TRA	Y®)	Revision: 23RD ED)	Date: 2016	
2525	ESCHE	RICHIA COLI	03/23/2021	11/30/2022	D	MIC	NE
2500	TOTAL	COLIFORMS	03/23/2021	11/30/2022	D	MIC	NE
Method Code: 202134	149	Method Ref: SM 9223 B (COLILERT [®] -18 QUANTI-T	「RAY®)	Revision: 23RD ED)	Date: 2016	
2525	ESCHE	RICHIA COLI	03/23/2021	11/30/2022	D	MIC	NE
2500	TOTAL	COLIFORMS	03/23/2021	11/30/2022	D	MIC	NE
Method Code: 202144	131	Method Ref: SM 9223 B (COLILERT®-18)		Revision: 23RD ED)	Date: 2016	
2525	ESCHE	RICHIA COLI	03/23/2021	11/30/2022	D	MIC	NE
2500	TOTAL	COLIFORMS	03/23/2021	11/30/2022	D	MIC	NE
Method Code: 202144	142	Method Ref: SM 9223 B (COLILERT®)		Revision: 23RD ED)	Date: 2016	
2525	ESCHE	RICHIA COLI	03/23/2021	11/30/2022	D	MIC	NE
2500	TOTAL	COLIFORMS	03/23/2021	11/30/2022	D	MIC	NE
Method Code: 100138	306	Method Ref: EPA 200.7		Revision: 4.4		Date: 1994	
1000	ALUM	INUM	03/23/2021	11/30/2022	D	MET	NE
1015	BARIU	M	03/23/2021	11/30/2022	D	MET	NE
1020	BERYL	LIUM	03/23/2021	11/30/2022	D	MET	NE
1030	CADM	IUM	03/23/2021	11/30/2022	D	MET	NE
1035	CALCIU	UM	03/23/2021	11/30/2022	D	MET	NE
1040	CHRO	MIUM	03/23/2021	11/30/2022	D	MET	NE
1055	COPPE	ER	03/23/2021	11/30/2022	D	MET	NE
1070	IRON		03/23/2021	11/30/2022	D	MET	NE
1085	MAGN	IESIUM	03/23/2021	11/30/2022	D	MET	NE
1090	MANG	GANESE	03/23/2021	11/30/2022	D	MET	NE
1105	NICKEI	L	03/23/2021	11/30/2022	D	MET	NE
1150	SILVER	3	03/23/2021	11/30/2022	D	MET	NE
1155	SODIU	IM	03/23/2021	11/30/2022	D	MET	NE
1190	ZINC		03/23/2021	11/30/2022	D	MET	NE
Method Code: 100146	505	Method Ref: EPA 200.8		Revision: 5.4		Date: 1994	
1000	ALUM	INUM	03/23/2021	11/30/2022	D	MET	NE
1005	ANTIN	IONY	03/23/2021	11/30/2022	D	MET	NE
1010	ARSEN	lic	03/23/2021	11/30/2022	D	MET	NE
1015	BARIU	Μ	03/23/2021	11/30/2022	D	MET	NE
1030	CADM	IUM	03/23/2021	11/30/2022	D	MET	NE
1040	CHRO	MIUM	03/23/2021	11/30/2022	D	MET	NE
1075	LEAD		03/23/2021	11/30/2022	D	MET	NE

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST

ANALYTE LIST NUMBER: 223821-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES

4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

1090	MAN	GANESE	03/23/2021	11/30/2022	D	MET	NE
1105	NICKI	EL	03/23/2021	11/30/2022	D	MET	NE
1140	SELEN	NIUM	03/23/2021	11/30/2022	D	MET	NE
1150	SILVE	R	03/23/2021	11/30/2022	D	MET	NE
1165	THAL	LIUM	03/23/2021	11/30/2022	D	MET	NE
1190	ZINC		03/23/2021	11/30/2022	D	MET	NE
Method Code	: 10036609	Method Ref: EPA 245.1		Revision: 3		Date: 1994	
1095	MERO	CURY	03/23/2021	11/30/2022	D	MET	NE
Method Code	: 10011800	Method Ref: EPA 180.1		Revision: 2.0		Date: 1993	
2055	TURB	IDITY	03/23/2021	11/30/2022	D	NMI	NE
Method Code	: 10013806	Method Ref: EPA 200.7		Revision: 4.4		Date: 1994	
1755	ΤΟΤΑ	L HARDNESS AS CACO3	03/29/2021	11/30/2022	D	NMI	NE
Method Code	: 10053200	Method Ref: EPA 300.0		Revision: 2.1		Date: 1993	
1575	CHLO	RIDE	03/23/2021	11/30/2022	D	NMI	NE
1810	NITRA	ATE AS N	03/23/2021	11/30/2022	D	NMI	NE
1840	NITRI	TE AS N	03/23/2021	11/30/2022	D	NMI	NE
1870	ORTH	IOPHOSPHATE AS P	03/23/2021	11/30/2022	D	NMI	NE
2000	SULF	ATE	03/23/2021	11/30/2022	D	NMI	NE
Method Code	: 10067604	Method Ref: EPA 353.2		Revision: 2		Date: 1993	
1810	NITR	ATE AS N	03/23/2021	11/30/2022	D	NMI	NE
1820	NITR	ATE PLUS NITRITE AS N	03/23/2021	11/30/2022	D	NMI	NE
1840	NITRI	TE AS N	03/23/2021	11/30/2022	D	NMI	NE
Method Code	: 10070005	Method Ref: EPA 365.1		Revision: 2		Date: 1993	
1870	ORTH	IOPHOSPHATE AS P	03/23/2021	11/30/2022	D	NMI	NE
Method Code	: 20048617	Method Ref: SM 2510 B-2011		Revision:		Date: 2011	
1610	CONE	DUCTIVITY	03/23/2021	11/30/2022	D	NMI	NE
Method Code	: 20050457	Method Ref: SM 2540 C		Revision: 23RD ED		Date: 2015	
1955	RESID	DUE-FILTERABLE (TDS)	03/23/2021	11/30/2022	D	NMI	NE
Method Code	: 20053127	Method Ref: SM 2550 B		Revision: 22ND ED		Date: 2010	
2030	TEMF	PERATURE, DEG. C	03/23/2021	11/30/2022	D	NMI	NE
Method Code	: 20102414	Method Ref: SM 4500-F C-2011		Revision:		Date: 2011	
1730	FLUO	RIDE	03/23/2021	11/30/2022	D	NMI	NE
Method Code	: 20105220	Method Ref: SM 4500-H+ B-2011		Revision:		Date: 2011	
1900	PH		03/23/2021	11/30/2022	D	NMI	NE
Method Code	: 20211443	Method Ref: SM 9223 B (COLILERT® QU	JANTI-TRAY®)	Revision: 23RD ED		Date: 2016	
2525	ESCH	ERICHIA COLI	03/23/2021	11/30/2022	Ν	MIC	NE
2500	ΤΟΤΑ	L COLIFORMS	03/23/2021	11/30/2022	Ν	MIC	NE

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST

ANALYTE LIST NUMBER: 223821-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES

4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

Method Code: 20213	449 Method Ref: SM 9223 B (COLILERT®-18 QU	JANTI-TRAY®)	Revision: 23RD ED		Date: 2016	
2525	ESCHERICHIA COLI	03/23/2021	11/30/2022	Ν	MIC	NE
2500	TOTAL COLIFORMS	03/16/2021	11/30/2022	Ν	MIC	NE
Method Code: 10013	806 Method Ref: EPA 200.7		Revision: 4.4		Date: 1994	
1000	ALUMINUM	12/01/2019	11/30/2022	Ν	MET	NE
1005	ANTIMONY	12/01/2019	11/30/2022	Ν	MET	NE
1010	ARSENIC	12/01/2019	11/30/2022	Ν	MET	NE
1015	BARIUM	12/01/2019	11/30/2022	Ν	MET	NE
1020	BERYLLIUM	12/01/2019	11/30/2022	Ν	MET	NE
1030	CADMIUM	12/01/2019	11/30/2022	Ν	MET	NE
1035	CALCIUM	12/01/2019	11/30/2022	Ν	MET	NE
1040	CHROMIUM	12/01/2019	11/30/2022	Ν	MET	NE
1050	COBALT	12/01/2019	11/30/2022	Ν	MET	NE
1055	COPPER	12/01/2019	11/30/2022	Ν	MET	NE
1070	IRON	12/01/2019	11/30/2022	Ν	MET	NE
1075	LEAD	12/01/2019	11/30/2022	Ν	MET	NE
1085	MAGNESIUM	12/01/2019	11/30/2022	Ν	MET	NE
1090	MANGANESE	12/01/2019	11/30/2022	Ν	MET	NE
1100	MOLYBDENUM	12/01/2019	11/30/2022	Ν	MET	NE
1105	NICKEL	12/01/2019	11/30/2022	Ν	MET	NE
1125	POTASSIUM	12/01/2019	11/30/2022	Ν	MET	NE
1140	SELENIUM	12/01/2019	11/30/2022	Ν	MET	NE
1150	SILVER	12/01/2019	11/30/2022	Ν	MET	NE
1155	SODIUM	12/01/2019	11/30/2022	Ν	MET	NE
1160	STRONTIUM	12/01/2019	11/30/2022	Ν	MET	NE
1165	THALLIUM	12/01/2019	11/30/2022	Ν	MET	NE
1175	TIN	12/01/2019	11/30/2022	Ν	MET	NE
1180	TITANIUM	12/01/2019	11/30/2022	Ν	MET	NE
1185	VANADIUM	12/01/2019	11/30/2022	Ν	MET	NE
1190	ZINC	12/01/2019	11/30/2022	Ν	MET	NE
Method Code: 10014	605 Method Ref: EPA 200.8		Revision: 5.4		Date: 1994	
1000	ALUMINUM	12/01/2019	11/30/2022	Ν	MET	NE
1005	ANTIMONY	12/01/2019	11/30/2022	Ν	MET	NE
1010	ARSENIC	12/01/2019	11/30/2022	Ν	MET	NE
1015	BARIUM	12/01/2019	11/30/2022	Ν	MET	NE
1020	BERYLLIUM	12/01/2019	11/30/2022	Ν	MET	NE
1030	CADMIUM	12/01/2019	11/30/2022	Ν	MET	NE

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST

ANALYTE LIST NUMBER: 223821-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES

4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

18	340	NITRITE	ASN	12/01/2019	11/30/2022	Ν	NMI	NE
18	310	NITRAT	E AS N	12/01/2019	11/30/2022	Ν	NMI	NE
15	575	CHLORI	DE	12/01/2019	11/30/2022	Ν	NMI	NE
15	540	BROMI	DE	12/01/2019	11/30/2022	N	NMI	NE
Method	Code: 100532	00	Method Ref: EPA 300.0		Revision: 2.1		Date: 1993	
17	755	TOTAL	HARDNESS AS CACO3	03/29/2021	11/30/2022	Ν	NMI	NE
Method	Code: 100146	05	Method Ref: EPA 200.8		Revision: 5.4		Date: 1994	
17	755	TOTAL	HARDNESS AS CACO3	03/29/2021	11/30/2022	Ν	NMI	NE
Method	Code: 100138	06	Method Ref: EPA 200.7		Revision: 4.4		Date: 1994	
20)55	TURBIC	ITY	12/01/2019	11/30/2022	Ν	NMI	NE
Method	Code: 100118	00	Method Ref: EPA 180.1		Revision: 2.0		Date: 1993	
10)45	CHRON	IIUM VI	12/01/2019	11/30/2022	Ν	MET	NE
Method	Code: 200662	66	Method Ref: SM 3500-CR B-2011		Revision:		Date: 2011	
10)95	MERCU	RY	12/01/2019	11/30/2022	Ν	MET	NE
Method	Code: 102372	04	Method Ref: EPA 1631E		Revision:		Date: 2002	
10)95	MERCU	RY	12/01/2019	11/30/2022	Ν	MET	NE
Method	Code: 100366	09	Method Ref: EPA 245.1	, - ,	Revision: 3		Date: 1994	-
11	190	ZINC		12/01/2019	11/30/2022	Ν	MET	NE
11	185	VANAD	IUM	12/01/2019	11/30/2022	Ν	MET	NE
11	180	TITANI	JM	12/01/2019	11/30/2022	Ν	MET	NE
11	175	TIN		12/01/2019	11/30/2022	Ν	MET	NE
11	165	THALLI	ML	12/01/2019	11/30/2022	Ν	MET	NE
11	160	STRON	пим	12/01/2019	11/30/2022	Ν	MET	NE
11	155	SODIUN	Ν	12/01/2019	11/30/2022	Ν	MET	NE
11	150	SILVER		12/01/2019	11/30/2022	Ν	MET	NE
11	L40	SELENI	M	12/01/2019	11/30/2022	Ν	MET	NE
11	125	POTASS	SIUM	12/01/2019	11/30/2022	Ν	MET	NE
11	105	NICKEL		12/01/2019	11/30/2022	Ν	MET	NE
11	L00	MOLYB	DENUM	12/01/2019	11/30/2022	Ν	MET	NE
10)90	MANG	ANESE	12/01/2019	11/30/2022	Ν	MET	NE
10)85	MAGN	SIUM	12/01/2019	11/30/2022	Ν	MET	NE
10)75	LEAD		12/01/2019	11/30/2022	Ν	MET	NE
10)70	IRON		12/01/2019	11/30/2022	Ν	MET	NE
10)55	COPPEI	3	12/01/2019	11/30/2022	Ν	MET	NE
10)50	COBAL	Г	12/01/2019	11/30/2022	Ν	MET	NE
10	040	CHRON	11UM	12/01/2019	11/30/2022	Ν	MET	NE
10)35	CALCIU	Μ	12/01/2019	11/30/2022	Ν	MET	NE

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST

ANALYTE LIST NUMBER: 223821-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES

4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

1870	ORTHOPHOSPHATE AS P		12/01/2019	11/30/2022	Ν	NMI	NE
2000	SUL	FATE	12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 1005	5206	Method Ref: EPA 310.2		Revision:		Date: 1974	
1505	ALKA	ALINITY AS CACO3	12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 1006	3602	Method Ref: EPA 350.1		Revision: 2		Date: 1993	
1515	AMM	MONIA AS N	12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 1006	5404	Method Ref: EPA 351.2		Revision: 2		Date: 1993	
1795	TOT	AL KJELDAHL NITROGEN (TKN)	12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 1006	7604	Method Ref: EPA 353.2		Revision: 2		Date: 1993	
1810	NITF	RATE AS N	12/01/2019	11/30/2022	Ν	NMI	NE
1820	NITF	RATE PLUS NITRITE AS N	03/09/2020	11/30/2022	Ν	NMI	NE
1840	NITF	RITE AS N	03/23/2021	11/30/2022	Ν	NMI	NE
Method Code: 1007	0005	Method Ref: EPA 365.1		Revision: 2		Date: 1993	
1870	ORT	HOPHOSPHATE AS P	12/01/2019	11/30/2022	Ν	NMI	NE
1910	TOT	AL PHOSPHORUS	12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 1007	7404	Method Ref: EPA 410.4		Revision: 2		Date: 1993	
1565	CHE	MICAL OXYGEN DEMAND (COD)	12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 1007	9400	Method Ref: EPA 420.1		Revision:		Date: 1978	
1905	TOT	AL PHENOLICS	12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 1008	1400	Method Ref: EPA 445		Revision: 1.2		Date: 1997	
9345	CHL	OROPHYLLS	12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 1026	1617	Method Ref: EPA 1664B		Revision:		Date: 2010	
1803	N-HI	EXANE EXTRACTABLE MATERIAL (O&G)	12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 2004	8617	Method Ref: SM 2510 B-2011		Revision:		Date: 2011	
1610	CON	IDUCTIVITY	03/23/2021	11/30/2022	Ν	NMI	NE
Method Code: 2004	9438	Method Ref: SM 2540 B-2015		Revision:		Date: 2015	
1950	RESI	DUE-TOTAL (TS)	08/22/2021	11/30/2022	Ν	NMI	NE
Method Code: 2005	0457	Method Ref: SM 2540 C		Revision: 23RD ED		Date: 2015	
1955	RESI	DUE-FILTERABLE (TDS)	03/23/2021	11/30/2022	Ν	NMI	NE
Method Code: 2005	1223	Method Ref: SM 2540 D-2015		Revision:		Date: 2015	
1960	RESI	DUE-NONFILTERABLE (TSS)	08/22/2021	11/30/2022	Ν	NMI	NE
Method Code: 2005	3127	Method Ref: SM 2550 B		Revision: 22ND ED		Date: 2010	
2030	TEM	PERATURE, DEG. C	12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 2008	0426	Method Ref: SM 4500-CL E-2011		Revision:		Date: 2011	
1940	TOT	AL RESIDUAL CHLORINE	12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 2008	5216	Method Ref: SM 4500-CL C-2011		Revision:		Date: 2011	
1575	CHL	ORIDE	12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 2009	7023	Method Ref: SM 4500-CN ⁻ G		Revision: 23RD ED		Date: 2016	
1510	AME	ENABLE CYANIDE	03/23/2021	11/30/2022	Ν	NMI	NE

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST

ANALYTE LIST NUMBER: 223821-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES

4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

Method Code: 201052	220	Method Ref: SM 4500-H+ B-2011		Revision:		Date: 2011	
1900	PH		12/01/2019	11/30/2022	Ν	NMI	NE
Method Code: 201350)39	Method Ref: SM 5210 B-2016		Revision:		Date: 2016	
1530	BIOCH	HEMICAL OXYGEN DEMAND (BOD)	03/23/2021	11/30/2022	Ν	NMI	NE
1555	CARB	ONACEOUS BOD (CBOD)	03/23/2021	11/30/2022	Ν	NMI	NE
Method Code: 201376	537	Method Ref: SM 5310 B-2014		Revision: 23RD ED		Date: 2014	
2040	ΤΟΤΑ	L ORGANIC CARBON (TOC)	03/23/2021	11/30/2022	Ν	NMI	NE
Method Code: 201386	530	Method Ref: SM 5310 C-2014		Revision: 23RD ED		Date: 2014	
2040	ΤΟΤΑ	L ORGANIC CARBON (TOC)	03/23/2021	11/30/2022	Ν	NMI	NE
Method Code: 60007	L61	Method Ref: LACHAT 10-204-00-1-X		Revision:		Date: 2005	
1645	ΤΟΤΑ	L CYANIDE	03/23/2021	11/30/2022	Ν	NMI	NE
Method Code: 600314	150	Method Ref: OIA 1677-09		Revision:		Date: 2010	
1523	AVAIL	ABLE CYANIDE	03/23/2021	11/30/2022	Ν	NMI	NE
Method Code: 101332	207	Method Ref: SW-846 3005A		Revision: UPDATE I		Date: 1992	
1438	PRECO	ONCENTRATION UNDER ACID	12/01/2019	11/30/2022	Ν	PRE	NE
Method Code: 101336	505	Method Ref: SW-846 3010A		Revision: UPDATE I		Date: 1992	
1420	HOT F	PLATE ACID DIGESTION (HNO3 + HCL)	12/01/2019	11/30/2022	Ν	PRE	NE
Method Code: 101340	006	Method Ref: SW-846 3015A		Revision: UPDATE IN	/	Date: 2007	
1430	MICR	OWAVE-ASSISTED ACID DIGESTION OF TCLP EXTRACTS	03/23/2021	11/30/2022	Ν	PRE	NH
Method Code: 102142	207	Method Ref: EPA 1000.0 - FATHEAD MINNOW, 7-D DAILY	AY CHRONIC,	Revision:		Date: 2002	
3470	IC25 (ON) GROWTH	12/01/2019	11/30/2022	Ν	тох	NE
3475	NOEC	(GROWTH)	12/01/2019	11/30/2022	Ν	тох	NE
3465	NOEC	(SURVIVAL)	12/01/2019	11/30/2022	Ν	тох	NE
Method Code: 102530	040	Method Ref: EPA 1002.0 - CERIODAPHNIA DUBIA, CHRONIC,	3-BROOD	Revision:		Date: 2002	
3480	IC25 F	REPRODUCTION	12/01/2019	11/30/2022	Ν	тох	NE
3465	NOEC	(SURVIVAL)	12/01/2019	11/30/2022	Ν	тох	NE
3485	NOEC	REPRODUCTION	12/01/2019	11/30/2022	Ν	тох	NE
Method Code: 100138	306	Method Ref: EPA 200.7		Revision: 4.4		Date: 1994	
1000	ALUN	IINUM	12/01/2019	11/30/2022	SC	MET	NE
1005	ANTIN	MONY	12/01/2019	11/30/2022	SC	MET	NE
1010	ARSE	NIC	12/01/2019	11/30/2022	SC	MET	NE
1015	BARII	IM	12/01/2019	11/30/2022	SC	MFT	NF
1020	RERVI		12/01/2019	11/30/2022	sc	MET	NE
1020	CADA		12/01/2010	11/20/2022	sc		NE
1030	CADIV		12/01/2019	11/20/2022	50		
1035	CALCI		12/01/2019	11/30/2022	SC		NE
1040	CHRO	IVIUM	12/01/2019	11/30/2022	SC	MET	NE
1050	COBA	IT	12/01/2019	11/30/2022	SC	MFT	NF

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST

ANALYTE LIST NUMBER: 223821-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES

4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

1055	COPP	ER	12/01/2019	11/30/2022	SC	MET	NE
1070	IRON		12/01/2019	11/30/2022	SC	MET	NE
1075	LEAD		12/01/2019	11/30/2022	SC	MET	NE
1085	MAG	NESIUM	12/01/2019	11/30/2022	SC	MET	NE
1090	MAN	GANESE	12/01/2019	11/30/2022	SC	MET	NE
1100	MOL	(BDENUM	12/01/2019	11/30/2022	SC	MET	NE
1105	NICK	EL	12/01/2019	11/30/2022	SC	MET	NE
1125	ΡΟΤΑ	SSIUM	12/01/2019	11/30/2022	SC	MET	NE
1140	SELEN	NUM	12/01/2019	11/30/2022	SC	MET	NE
1150	SILVE	R	12/01/2019	11/30/2022	SC	MET	NE
1155	SODI	ML	12/01/2019	11/30/2022	SC	MET	NE
1160	STRO	NTIUM	12/01/2019	11/30/2022	SC	MET	NE
1165	THAL	LIUM	12/01/2019	11/30/2022	SC	MET	NE
1175	TIN		12/01/2019	11/30/2022	SC	MET	NE
1180	TITAN	NUM	12/01/2019	11/30/2022	SC	MET	NE
1185	VANA	DIUM	12/01/2019	11/30/2022	SC	MET	NE
1190	ZINC		12/01/2019	11/30/2022	SC	MET	NE
Method Code: 1003	6609	Method Ref: EPA 245.1		Revision: 3		Date: 1994	
1095	MERC	CURY	12/01/2019	11/30/2022	SC	MET	NE
Method Code: 1006	3602	Method Ref: EPA 350.1		Revision: 2		Date: 1993	
1515	AMM	IONIA AS N	12/01/2019	11/30/2022	SC	NMI	NE
Method Code: 1006	5404	Method Ref: EPA 351.2		Revision: 2		Date: 1993	
1795	TOTA	L KJELDAHL NITROGEN (TKN)	12/01/2019	11/30/2022	SC	NMI	NE
Method Code: 1007	0005	Method Ref: EPA 365.1		Revision: 2		Date: 1993	
1910	ΤΟΤΑ	L PHOSPHORUS	12/01/2019	11/30/2022	SC	NMI	NE
Method Code: 1019	8455	Method Ref: SW-846 9045D		Revision: UPDATI	EIIIB	Date: 2004	
1900	PH		03/23/2021	11/30/2022	SC	NMI	NE
Method Code: 2000	5270	Method Ref: SM 2540 G-2011		Revision:		Date: 2011	
1947	RESID	DUE - FIXED	12/01/2019	11/30/2022	SC	NMI	NE
1950	RESID	DUE-TOTAL (TS)	12/01/2019	11/30/2022	SC	NMI	NE
1970	RESID	DUE-VOLATILE	12/01/2019	11/30/2022	SC	NMI	NE
Method Code: 1013	6 002	Method Ref: SW-846 3051A		Revision: UPDATI	IV	Date: 2007	
1426	MICR	OWAVE DIGESTION OF SOLIDS	03/23/2021	11/30/2022	SC	PRE	NE

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST

ANALYTE LIST NUMBER: 223821-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

NORTHEAST 11/30/2021

Bill Hall NH ELAP Program Manager Issue Date: 11/30/2021

Matrix Legend: AE=Air; BT=Tissue; D=Drinking Water; N=Non-Potable Water; SC=Solid and Chemical Materials

Category Legend: MIC=Microbiology; MET=Metals; NMI=Non-Metal Inorganics; PRE=Preparation; VOC=Volatile Organic Compounds; SBN=SVOC-BNA; SHE=SVOC-Herbicides; SNO=SVOC-NOS; SPC=SVOC-PCB; SPE=SVOC-Pesticides; RAD=Radiochemistry; WET=Wet, PFC=Perfluorinated compound

Accreditation Legend: NE=NELAP; NH=NH State Certification; CE=State Certification; IN=Interim (NELAP); WI=Withdrawn; AP=Applied; RE=Revoked; SU=Suspended

Appendix F. Acknowledgement Letters

April 11, 2022

Mr. Seth Hothem Supervisor of Environmental Assessment Northeast Ohio Regional Sewer District 4747 East 49th Street Cuyahoga Heights, Ohio 44125

Dear Mr. Hothem:

This letter is to acknowledge that I am responsible for assisting the Northeast Ohio Regional Sewer District's Water Quality and Industrial Surveillance Division in conducting chemical water quality assessments for the 2022 Chagrin River Environmental Monitoring, Cuyahoga River Environmental Monitoring, Euclid/Dugway Storage Tunnels Post-Construction Monitoring, Euclid Creek Microbial Source Tracking Study, Euclid Creek Sediment Sampling, Woodland Central Green Infrastructure Water Quality Improvement Study, Stream Restoration Projects Pre- & Post-Construction Monitoring and the Lake Erie Nutrient Study.

It is understood that an Ohio Environmental Protection Agency Level 3 Qualified Data Collector Certification for Chemical Water Quality Assessment is required to perform these tasks and that I am responsible for maintaining my Level 3 QDC Certification during the term of these Study Plans.

In addition, I have not been convicted nor pleaded guilty to a Violation of Section 2911.21 of the Revised Code (criminal trespass) or a substantially similar municipal ordinance within the previous five years.

Sincerely,

Kelsey Amidon Stormwater Inspector III Northeast Ohio Regional Sewer District 4747 East 49th Street Cuyahoga Heights, Ohio, 44125

Appendix G. Wild Animal Collector's Permit

Division of Wildlife Headquarters 2045 Morse Road. Bldg. G Columbus, Ohio 43229-6693 1-800-WILDLIFE

Scientific Collection

License Number: SC200107

Permit Holder: SETH HOTHEM 4747 EAST 49TH ST CUYAHOGA HEIGHTS, OH 44125 Chief: Kendra S. Wecker

Effective Date:03/16/2021Expiration Date:03/15/2023

NORTHEAST OHIO REGIONAL SEWER DISTRICT 4747 EAST 49TH ST CUYAHOGA HEIGHTS, OH 44125

Others authorized on permit: YES (See below)

The permittee is hereby granted permission to take, possess, and transport at any time and in any manner specimens of wild animals, subject to the conditions and restrictions listed below or any documents accompanying this permit.

The Chief of the Division of Wildlife will not issue permit for Dangerous Wild Animal (DWA) species (ORC 935.01) except native DWA, required for specific projects. The permit issued by the Chief does not relieve the permittee of any responsibility to obtain a permit pursuant to R.C. Chapter 935 except as specified for the animals and purposes permitted herein. The permittee must adhere to all additional requirements under R.C. Chapter 935.

THIS PERMIT IS RESTRICTED AS FOLLOWS:

1. Permittee may collect fish, macroinvertebrates, and amphibians for survey and inventory purposes. All non-target species are to be released at site of capture.

2. Fish may be collected for fish tissue study. Common species of fish may also be collected and displayed for educational purposes. Fish must be displayed at NEORSD or the Greater Cleveland Aquarium or other public educational facility. They may not be maintained at a private residence. Sport fish >6 in. must be immediately released.

3. Qualified surveyors may survey freshwater mussels for reconnaissance purposes on Group 1 and 3 streams. Relic mussel shells may be collected and taken to NEORSD. No more than two specimens per species.

4. Biosecurity measures must be taken at all times to minimize the potential transmission of diseases. Please follow the recommendations of the Northeast PARC (included) for all work with reptiles and amphibians.

5. Permittee must consult with Wildlife's Stream Conservation and Environmental Assessment Unit (SCEA) prior to conducting any wild animal work associated with compliance requirements of the Clean Water Act (CWA) Section 401 and/or 404. Contact the unit at (614) 265-6346 (John Navarro).

6. Twenty-four (24) hours prior to collection, contact must be made with the local wildlife officer to advise location and duration of sampling.

7. All voucher specimens are to be deposited at NEORSD or the Cleveland Museum of Biological Diversity.

8. Permittee must contact the Division of Wildlife if previously undocumented aquatic invasive species are discovered. Contact John Navarro at (614) 265-6346 or john.navarro@dnr.ohio.gov with information. If grass carp, silver carp, big head carp or black carp are captured, please retain and contact Eric Weimer at (419) 625-8062 or at eric.weimer@dnr.ohio.gov.

9. Collection is prohibited in the Killbuck, Big Darby, Little Darby, including the tributaries to, the east branch of the Chagrin River above I-90, Fish Creek (Williams County) and Division of Wildlife property without explicit written permission from the Division of Wildlife. Sampling is further restricted in streams that may have federally listed mussels. See Appendix A of the Ohio Mussel Survey Protocol (April 2020 @

Division of Wildlife Headquarters 2045 Morse Road. Bldg. G Columbus, Ohio 43229-6693 1-800-WILDLIFE

Chief: Kendra S. Wecker

Scientific Collection

License Number: SC200107

Permit Holder:

SETH HOTHEM 4747 EAST 49TH ST CUYAHOGA HEIGHTS, OH 44125 Effective Date:03/16/2021Expiration Date:03/15/2023

NORTHEAST OHIO REGIONAL SEWER DISTRICT 4747 EAST 49TH ST CUYAHOGA HEIGHTS, OH 44125

https://ohiodnr.gov/static/documents/wildlife/permits/dow-protocol-ohio-mussel-survey.pdf) for locations of federally listed mussels.

10. An annual electronic report must be submitted in the Wildlife Diversity Database Excel spreadsheet format to the Permit Coordinator at wildlife.permits@dnr.ohio.gov by March 15th of each year. The file may be downloaded from wildohio.gov or obtained from the Permit Coordinator.

Locations of Collecting:

Statewide with noted exceptions

Equipment and method used in collection:

Any scientifically accepted method, Electrofishing, seines, trap net, Hand collection, net, divers

Name and number of each species to be collected:

Fish (As requested), Macroinvertebrates (As requested), Mussel relics/reconaissance (as required/group 1 and 3 streams), Salamanders (As requested)

NO ENDANGERED SPECIES OR AQUATIC NUISANCE SPECIES MAY BE TAKEN WITHOUT WRITTEN PERMISSION FROM THE CHIEF

Division of Wildlife Headquarters 2045 Morse Road. Bldg. G Columbus, Ohio 43229-6693 1-800-WILDLIFE

Scientific Collection

License Number: SC200107

Permit Holder:

SETH HOTHEM 4747 EAST 49TH ST CUYAHOGA HEIGHTS, OH 44125 Chief: Kendra S. Wecker

Effective Date:03/16/2021Expiration Date:03/15/2023

NORTHEAST OHIO REGIONAL SEWER DISTRICT 4747 EAST 49TH ST CUYAHOGA HEIGHTS, OH 44125

SUB-PERMITTEES

Permit #SC200107 authorizes the following persons to conduct the activities listed on the permit, within the conditions and restrictions set forth. Each person must carry and exhibit upon request, a copy of the permit and this attachment when conducting any of the listed activities. The person named on the permit assumes full responsibility for the actions of the persons on this list and for completing and submitting all required reports.

- Boesinger, Hannah
- Brauer, Jonathan
- Fitzgibbons, Kevin
- Knittle, Jillian
- Maichle, Ron
- Matteson, Mark
- Neelon, Daniel
- Phillips, Denise
- Rhoades, John
- Schiel, Joseph
- Soehnlen, Eric
- Telep, Justin

Appendix H. References

References

Chlorophyll a Sampling and Field Filtering Standard Operating Procedure (SOP-EA001-00)

- EPA New England- Region 1. (2005). Standard operating procedure for calibration and field measurement procedures for the YSI Model 6-Series Sondes and Data Logger (Including: temperature, pH, specific conductance, turbidity, dissolved oxygen, chlorophyll, rhodamine WT, ORP, and barometric pressure) (7th Revision). North Chelmsford, MA: The Office of Environmental Measurement and Evaluation, Ecosystem Assessment- Ecology Monitoring Team.
- Ohio Environmental Protection Agency. (1987a). Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters (Updated January 1988; September 1989; November 2006; August 2008; May 2015). Columbus, OH: Division of Water Quality Monitoring and Assessment.
- Ohio Environmental Protection Agency. (1987b). Biological criteria for the protection of aquatic life: Volume III. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities (Updated September 1989; March 2001; November 2006; August 2008; September 2015; June 2015). Columbus, OH: Division of Water Quality Monitoring and Assessment.
- Ohio Environmental Protection Agency. (1997). Draft. Biological Criteria for the Protection of Aquatic Life: Volume IV: Fish and Macroinvertebrate Indicies for Ohio's Lake Erie Nearshore Waters, Harbors, and Lacustuaries. Columbus, OH: Division of Surface Water, Ecological Assessment Unit.
- Ohio Environmental Protection Agency. (2003). Total Maximum Daily Load for the Lower Cuyahoga River. Columbus, OH: Division of Surface Water.
- Ohio Environmental Protection Agency. (2006). *Methods for assessing habitat in flowing waters: using the Qualitative Habitat Evaluation Index (QHEI)*. (Ohio EPA Technical Bulletin EAS/2006-06-1). Columbus, OH: Division of Surface Water; Division of Ecological Assessment Section.
- Ohio Environmental Protection Agency. (2010). *Methods of Assessing Habitat in Lake Erie Shoreline Waters Using the Qualitative Habitat Evaluation Index (QHEI) Approach (Version 2.1).* Columbus, OH: Division of Surface Water.
- Ohio Environmental Protection Agency. (2015). Proposed Stream Nutrient Assessment Procedure. Columbus, OH: Division of Surface Water, Ohio EPA Nutrients Technical Advisory Group.
- Ohio Environmental Protection Agency. (2019). Surface Water Field Sampling Manual for water quality parameters and flow. Columbus, Ohio: Division of Surface Water.
- Ohio Environmental Protection Agency. (2020). Ohio 2020 Integrated Water Quality Monitoring and Assessment Report. Columbus, Ohio: Division of Surface Water.

- Ohio Environmental Protection Agency. (2021a). Surface Water Field Sampling Manual for water quality parameters and flow. Columbus, Ohio: Division of Surface Water.
- Ohio Environmental Protection Agency. (2021b). *State of Ohio Water Quality Standards Ohio Administrative Code Chapter* 3745-1 (Revision: April 21, 2021). Columbus, OH: Division of Surface Water; Standards and Technical Support Section.