

Level 3 Project Study Plan

2020 Rocky River Environmental Monitoring

(1) Objectives

As part of the Northeast Ohio Regional Sewer District's (NEORSD) general watershed monitoring program, an ambient water quality assessment study will be conducted during the 2020 field season within the Rocky River watershed. The study area is comprised of 5 HUC 12 watershed assessment units (WAU) for a total of 18 sampling stations along 9 streams. Two Rocky River main branch sampling locations, river miles (RMs) 8.30 and 2.50, will be assessed as required by the NEORSD's Ohio Environmental Protection Agency (Ohio EPA) National Pollution Discharge Elimination System (NPDES) Permit for CSOs.

During this study, the fish and benthic macroinvertebrate communities, macrohabitat quality, and water chemistry will be surveyed at all sampling locations listed in section 6. All sampling and bioassessments will be conducted by the NEORSD's Environmental Assessment group in the Water Quality and Industrial Surveillance (WQIS) Division and will occur from June 15 through September 30, 2020 (through October 15 for fish sampling assessments), as required in the Ohio EPA Biological Criteria for the Protection of Aquatic Life Volume III (1987b)¹. All sampling and bioassessments will be performed by NEORSD Level 3 Qualified Data Collectors certified by the Ohio EPA in Fish Community Biology, Benthic Macroinvertebrate Biology, Chemical Water Quality, and Stream Habitat Assessment.

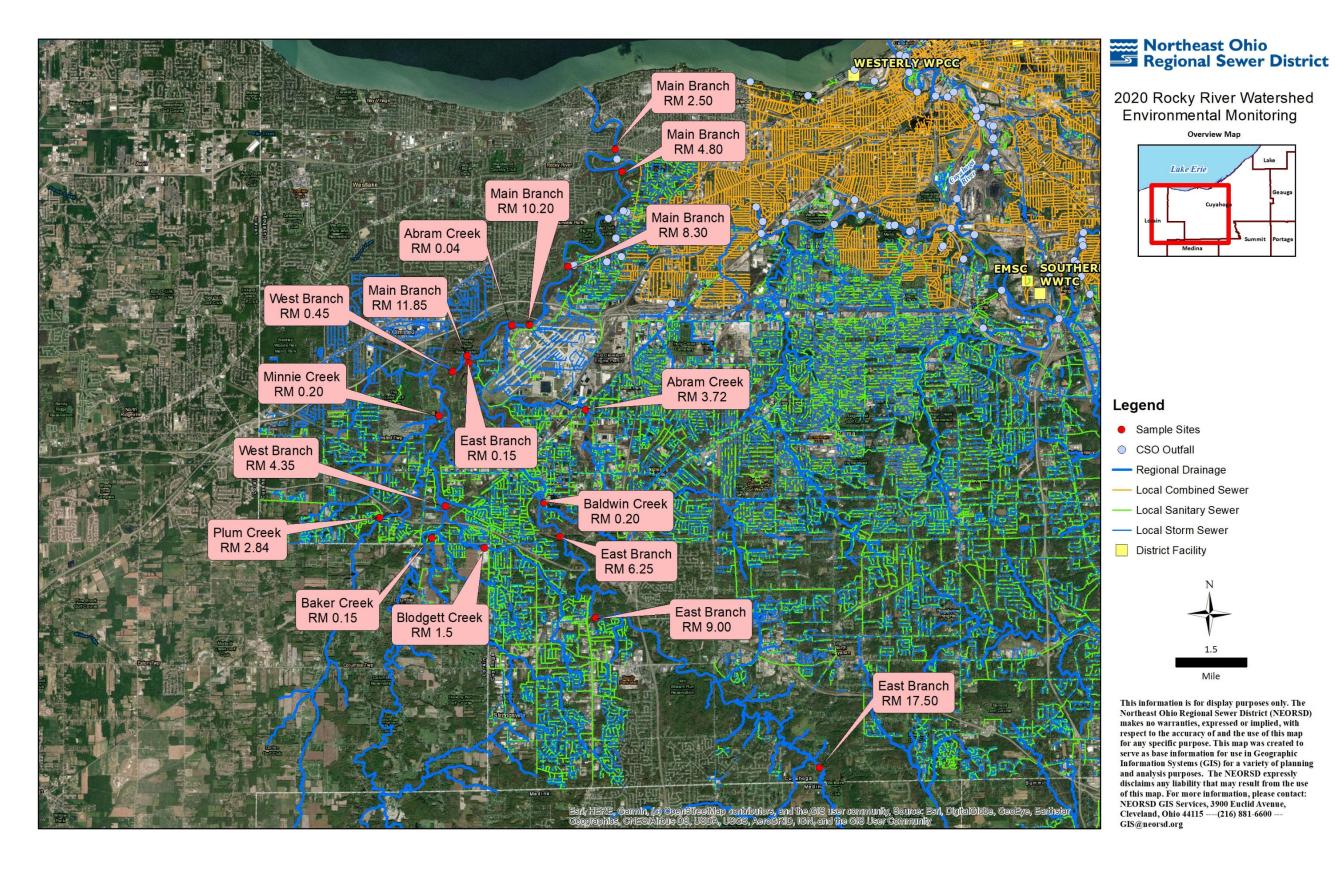
The objective of this study is to monitor aquatic health of the Rocky River watershed within NEORSD's service area, as well as determine potential impacts from NEORSD combined sewer overflows or other sources of pollution. Historical information will be used, where applicable, to determine changes in the biological, chemical, and physical conditions of the Rocky River watershed. The Rocky River East Branch (RM 9.00) will evaluate potential water quality improvements associated with the removal/modification of the dam at Bonnie Park. This dam is scheduled to be removed in 2020, restoring a free-flowing section of river between Hinkley Lake (RM 23.16) and North Quarry Lane (RM 5.25).

Results from aquatic bioassessments will determine attainment and appropriateness of existing aquatic life use designations. Water chemistry data will also be compared to the Ohio Water Quality Standards to determine attainment of applicable uses (Ohio EPA, 2019).

¹ See Appendix H for a list of references.

2020 Rocky River Environmental Monitoring May 5, 2020

(2) Point/Nonpoint Sources


Point Sources	Nonpoint Sources
North Olmsted WWTP	Stormwater runoff
North Royalton A & B WWTPs	Spills
Strongsville B & C WWTPs	Agriculture
Medina SD300 and SD500 WWTPs	
Cleveland Hopkins Airport	
NASA Lewis/Glenn Facility	
Cleveland Hopkins Airport	
Combined Sewer Overflows	
Storm Sewer Outfalls	
Home Sewage Treatment Systems	

A map has been provided in Section 6 to show point sources that may influence the water quality at each sample location. Other point sources include numerous tributaries to the Rocky River. These sources, along with the ones listed in the table above, may be impacting the health of the fish and benthic macroinvertebrate communities in the Rocky River watershed.

(6) Sampling Locations

The following sample locations will be surveyed on the Rocky River during the 2020 field season. Benthic macroinvertebrate and water chemistry collection sites are located near the midpoint of each electrofishing zone, indicated by RM. GPS coordinates are recorded at the downstream end of each electrofishing zone.

Location	River Mile	Lat. Long.	Station ID	Description	HUC 12 - WAU	Purpose
Abram Creek	3.72	41.3915 -81.8368	501760	Upstream of railroad tracks west of Plant Lane	041100010203 - Rocky River	Evaluate water chemistry, habitat, and fish and macroinvertebrate biology for general watershed monitoring
Abram Creek	0.04	41.4176 -81.8668	T01W79	Upstream of the confluence with Rocky River	041100010203 - Rocky River	Evaluate water chemistry, habitat, and fish and macroinvertebrate biology for general watershed monitoring
Baker Creek	0.15	41.3526 -81.9002	T01S13	Downstream of Sprague Road	041100010108 - Baker Creek-West Branch Rocky River	Evaluate water chemistry, habitat, and fish and macroinvertebrate biology for general watershed monitoring
Baldwin Creek	0.20	41.3632 -81.8542	T01G01	Upstream of Quarry Lane	041100010202 - Baldwin Creek-East Branch Rocky River	Evaluate water chemistry, habitat, and fish and macroinvertebrate biology for general watershed monitoring
Blodgett Creek	1.50	41.3491 -81.8763	T01A17	Upstream of North Marks Road	041100010108 - Baker Creek-West Branch Rocky River	Evaluate water chemistry, habitat, and fish and macroinvertebrate biology for general watershed monitoring
Minnie Creek	0.20	41.39003 -81.8969	T01A15	Downstream of New Hope Community Church driveway	041100010108 - Baker Creek-West Branch Rocky River	Evaluate water chemistry, habitat, and fish and macroinvertebrate biology for general watershed monitoring
Plum Creek	2.84	41.3589 -81.9214	T01G03	Upstream of Usher Road	041100010107 - Plum Creek	Evaluate water chemistry, habitat, and fish and macroinvertebrate biology for general watershed monitoring
Rocky River	11.85	41.4083 -81.8852	TW01W19	Downstream of Cedar Point Road	041100010203 - Rocky River	Evaluate water chemistry, habitat, and fish and macroinvertebrate biology for general watershed monitoring
Rocky River	10.20	41.4176 -81.8596	T01W15	Downstream of Abram Creek	041100010203 - Rocky River	Evaluate water chemistry, habitat, and fish and macroinvertebrate biology for general watershed monitoring
Rocky River	8.30	41.43541 -81.84358	501810	Upstream of Puritas Avenue	041100010203 - Rocky River	Evaluate water chemistry, habitat, and fish and macroinvertebrate biology for general watershed monitoring and as required by Ohio EPA issued NPDES Permit for CSOs.
Rocky River	4.80	41.4644 -81.8211	T01W07	Near Tyler Barn	041100010203 - Rocky River	Evaluate water chemistry, habitat, and fish and macroinvertebrate biology for general watershed monitoring
Rocky River	2.50	41.4713 -81.8240	T01W04	Upstream of Hilliard Road	041100010203 - Rocky River	Evaluate water chemistry, habitat, and fish and macroinvertebrate biology for general watershed monitoring and as required by Ohio EPA issued NPDES Permit for CSOs.
Rocky River East Branch	17.50	41.2814 -81.7425	T01W38	Upstream of Ridge Road	041100010201 - Headwaters East Branch Rocky River	Evaluate water chemistry, habitat, and fish and macroinvertebrate biology for general watershed monitoring
Rocky River East Branch	9.00	41.3278 -81.8335	T01W29	Upstream of Bonnie Park	041100010202 - Baldwin Creek-East Branch Rocky River	Evaluate water chemistry, habitat, and fish and macroinvertebrate biology for general watershed monitoring
Rocky River East Branch	6.25	41.3528 -81.8476	T01W59	Downstream of Valley Parkway	041100010202 - Baldwin Creek-East Branch Rocky River	Evaluate water chemistry, habitat, and fish and macroinvertebrate biology for general watershed monitoring
Rocky River East Branch	0.15	41.4060 -81.8846	T01P31	Upstream of Metro Park Valley Parkway	041100010202 - Baldwin Creek-East Branch Rocky River	Evaluate water chemistry, habitat, and fish and macroinvertebrate biology for general watershed monitoring
Rocky River West Branch	4.30	41.3623 -81.8945	T01K06	Downstream of Turnpike and RR bridge	041100010108 - Baker Creek-West Branch Rocky River	Evaluate water chemistry, habitat, and fish and macroinvertebrate biology for general watershed monitoring
Rocky River West Branch	0.45	41.4036 -81.8912	501850	Downstream of Lewis Road bridge	041100010108 - Baker Creek-West Branch Rocky River	Evaluate water chemistry, habitat, and fish and macroinvertebrate biology for general watershed monitoring

Overview Map

2020 Project Study Plans

(3) Parameters Covered

Fish specimens will be identified to species level, weighed, counted and examined for the presence of external anomalies including DELTs (deformities, eroded fins, lesions and tumors). An Ohio EPA Fish Data Sheet (Appendix A) will be completed during each assessment. Quantitative fish sampling is expected to be conducted at all locations.

Macroinvertebrate community assemblages will be collected from each location. An external Level 3 Qualified Data Collector for Benthic Macroinvertebrate Biology Identification will identify and enumerate the specimens collected from each site¹. All specimens will be identified to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b)². The NEORSD Macroinvertebrate Field Sheet (Appendix A) will be completed at each site during sample retrieval or when qualitative sampling is conducted.

Stream habitat will be measured by scoring components of the QHEI at all locations, including the substrate, instream cover, channel morphology, riparian zone, bank erosion, pool/glide and riffle/run quality and gradient. The Lacustuary QHEI (L-QHEI) will be performed at sites that are affected by the water level of Lake Erie. Examples of the Ohio EPA field sheets for the QHEI and the L-QHEI can be found in Appendix A.

Water chemistry samples will be collected at each electrofishing/ macroinvertebrate sampling site included in the study. Water chemistry samples will be analyzed by NEORSD's Analytical Services Division. Appendix B lists the parameters to be tested along with the detection limits and practical quantitation limits. Field measurements for dissolved oxygen, pH, temperature, conductivity and turbidity will also be performed. A Surface Water Condition Sampling Field Data Form will be completed at each site during each sampling event (Appendix A).

Benthic and water column chlorophyll *a* samples may be collected from stream locations. Chemical and physical water quality parameters to be measured in conjunction with the chlorophyll *a* samples include total phosphorus, dissolved reactive phosphorus, nitrite, nitrate+nitrite, ammonia, alkalinity, turbidity and suspended solids. In the Cuyahoga River, YSI 6600EDS, or EXO2 data sondes may

¹ The contractor responsible for doing this work as not been identified yet. Once this contract is awarded, their contact information will be submitted.

²See Appendix H for a list of all references.

be installed at RMs 16.20, 10.75, 10.10, and 7.00 around the time that this sampling is conducted to more frequently monitor dissolved oxygen, temperature, conductivity, specific conductivity and pH.

(4) Field Collection and Data Assessment Techniques

Field collections for fish will be conducted at all stream locations. Sampling will be conducted using longline, tote barge, backpack, or boat electrofishing techniques and will consist of shocking all habitat types within a sampling zone. Headwater and wading sites, which are 0.15 and 0.20 kilometers in length, respectively, will be surveyed by moving from downstream to upstream. Boat sites, which are 0.50 kilometers in length, will be surveyed by moving from upstream to downstream. The stunned fish will be collected and placed into a live well for later identification. The longline, tote barge, backpack, and boat electrofishing zones will be assessed one to three times during the field season (June 15 - October 15).

Fish will be identified to the species level, weighed, counted, and examined for the presence of external anomalies including DELTs. Fish easily identified (commonly collected from year to year) will be returned to the site from which they are collected. Fish species difficult to identify will be brought back to the laboratory for verification by NEORSD Level 3 Fish Qualified Data Collectors (QDC). If necessary, vouchers will be sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Voucher specimens will be collected as described in section (14). Endangered species and those too large for preservation will not be collected as voucher specimens, but will instead be photographed. Photographed vouchers will include features that permit definitive identification of the particular species.

Fish will be preserved in 10 percent formalin in the field, soaked in tap water for 24 to 48 hours after 5 to 7 days, then transferred to solutions of 30 and 50 percent ethanol for 5 to 7 days each and, finally, to 70 percent ethanol for long-term storage. Specimens larger than six inches will be slit along the right side and then soaked in formalin for approximately 10 to 14 days before being transferred to water and solutions of 30, 50 and 70 percent ethanol. Label information will include location (description and coordinates), date, time, collectors' names and sample identification code for each specimen collected.

Macroinvertebrate sampling will be conducted using quantitative and qualitative sampling techniques. Quantitative sampling will be done using a modified Hester-Dendy multi-plate artificial substrate sampler (HD) that is colonized for a six-week period. Multiple HD samplers may be installed at one or all sampling locations in case samplers are lost due to vandalism, burial, etc. or for the purposes of providing a replicate sample. Qualitative sampling will be conducted using a D-frame dip net

when HD samplers are retrieved. The NEORSD Macroinvertebrate Field Sheet will be completed during each HD retrieval. NEORSD Level 3 QDCs for Benthic Macroinvertebrate Biology Identification may identify specimens in replicate samples to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b).

Macroinvertebrate voucher specimens for both quantitative and qualitative sampling will be collected as described in section (14). Macroinvertebrate community assemblages collected will be shipped to an external Level 3 Qualified Data Collector for Benthic Macroinvertebrate Biology Identification for identification and enumeration. The Level 3 QDC will identify specimens to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b).

A detailed description of the sampling and analysis methods utilized in the fish community and macroinvertebrate surveys, including calculations of the IBI, MIwb, and ICI, can be found in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volumes II* (1987a) and *III* (1987b). Methods for assessing fish and macroinvertebrate communities in lacustuary zones can be found in Ohio EPA's draft *Biological Criteria for the Protection of Aquatic Life, Volume IV* (1997).

The QHEI, as described in Ohio EPA's Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI) (2006) will be used to assess aquatic habitat conditions at each sample location. The L-QHEI will be used where appropriate and will follow Ohio EPA's Methods of Assessing Habitat in Lake Erie Shoreline Waters Using the Qualitative Habitat Evaluation Index (QHEI) Approach (Version 2.1) (2010).

Water chemistry sampling may occur across a variety of flow conditions. Techniques used for water chemistry sampling and chemical analyses will follow the *Surface Water Field Sampling Manual for water quality parameters and flows* (Ohio EPA, 2018a). Chemical water quality samples from each site will be collected with at least one 4-liter disposable polyethylene cubitainers with disposable polypropylene lids and two 473-mL plastic bottles. Water samples collected for analysis of dissolved reactive phosphorus will be filtered using a 0.45-µm PVDF syringe filter and will be collected in a 125-mL plastic bottle. Bacteriological samples will be collected in a sterile plastic bottle preserved with sodium thiosulfate. All water quality samples will be collected as grab samples. Field blanks and duplicate samples will each comprise not less than 5% of the total samples collected for this study plan, for a total frequency of quality control samples of not less than 10% of the total samples collected. With the exception of bacteriological duplicate samples, the acceptable percent RPD will be based on the ratio of the sample concentration and detection limit (Ohio EPA, 2018a):

Acceptable % RPD = $[(0.9465X^{-0.344})*100] + 5$, where X = sample/detection limit ratio. For bacteriological duplicates, duplicate samples more than 5x apart from one another (%RPD > 133.3%) will be rejected in accordance with the Ohio EPA approved method for data validation of bacteriological samples outlined in Section F of the Ohio 2018 Integrated Water Quality Monitoring and Assessment Report (Ohio EPA, 2018b). Those RPDs that were higher than acceptable may indicate potential problems with sample collection and, as a result, the data will not be used for comparison to the water quality standards. Acid preservation of the samples, as specified in the NEORSD laboratory's standard operating procedure for each parameter, will occur in the field. Appendix B lists the analytical method, method detection limit and practical quantitation limit for each parameter analyzed. Field analyses include the use of either a YSI EXO1 sonde, or YSI 600XL sonde to measure dissolved oxygen (DO), water temperature, conductivity and pH; and when necessary, a Hanna HI 98129 meter to measure pH and a Hach HQ30d meter with LDO101 probe to measure DO. Field turbidity will be measured using a Hach 2100Q Turbidimeter. Specifications for these meters have been included in Appendix C.

Benthic and water column chlorophyll a samples may be collected if time and resources allow. Sampling methods will follow those detailed in the NEORSD Chlorophyll a Sampling and Field Filtering Standard Operating Procedure (SOP-EA001-00). A Chlorophyll a Sampling Field Sheet will be completed for each site (Appendix D). Water chemistry grab samples will be collected at the same time using the methods discussed previously and will be analyzed for nutrients, turbidity, alkalinity and suspended solids. Additionally, in the Cuyahoga River, approximately 24-hours prior to each chlorophyll a sampling event, YSI 6600 EDS, or EXO2 data sondes may be deployed at RMs 16.20, 10.75, 10.10 and 7.00. If installed, each data sonde will record, at fifteen-minute intervals, dissolved oxygen concentration, pH, temperature, and conductivity from the time the data sonde is deployed until the time it is retrieved. These data sondes will be placed in the stream by inserting each one into a 4.5-inch PVC pipe with holes drilled into the sides of the lower third of the pipe to allow water to pass through it. The data sondes will remain in the river for approximately 24-hours or longer following collection of the chlorophyll a samples.

Where possible, data assessment will include an analysis of temporal and spatial trends in the collected data. Species assemblages and individual metrics will be analyzed. Graphs that show current and historic QHEI, L-QHEI, IBI, LIBI, MIwb, ICI, and LICI scores and how these scores compare to attainment status of biocriteria will be prepared. Water chemistry data collected will be compared to Ohio water quality standards to determine whether any excursions from the applicable water quality criteria have occurred. It will also be used to determine any relationships among individual parameters and chlorophyll *a* concentrations.

Comparisons between water quality and biological community health will only be made if at least three water quality samples have been collected from that site.

(5) Stream Flow Measurement

Stream flow will be recorded for all locations during each electrofishing pass utilizing data from the United States Geological Survey (USGS) gauge station nearest the stream location, if applicable.

Stream flow will be measured with a Marsh-McBirney FloMate Model 2000 Portable Flow Meter, a HACH FH950 Flow Meter or an Aquaflow Probe Model 6900, which measure flow in feet per second, when HD samplers are installed and retrieved. The specifications for the flow meters can be found in Appendix C.

(7) Schedule

One to three electrofishing surveys will be conducted at each site between June 15 and October 15, 2020. Surveys will be conducted at least three weeks apart. Specific dates have not been scheduled. River flow and weather conditions will be assessed weekly to determine when each electrofishing pass will be conducted.

Artificial substrate samplers will be installed at stream locations between June 15 and August 19, 2020 and retrieved six weeks later. Qualitative macroinvertebrate sampling will be conducted one time at all sites. Specific dates have not been scheduled. River flow and weather conditions will be assessed weekly to determine when the HD sampler installations and retrievals and qualitative sampling will be conducted.

QHEI, and, if necessary, L-QHEI habitat evaluations will be conducted one time between June 15 and October 15, 2020. QHEI evaluations will be conducted around the same time as one of the electrofishing surveys.

Water chemistry samples will be collected a minimum of three times from stream locations between June 15 and October 15, 2020.

Benthic and water column chlorophyll *a* samples may be collected at least one time from stream locations between June 15 and October 15, 2020. These samples will be collected under low-flow conditions.

(8) QA/QC

Quality assurance and quality control of sampling and analysis methods for habitat, fish, and macroinvertebrate evaluations will follow Ohio EPA's *Biological Criteria*

for the Protection of Aquatic Life, Volumes II (1987a) and III (1987b), Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI) (2006), draft Biological Criteria for the Protection of Aquatic Life: Volume IV: Fish and Macroinvertebrate Indicies for Ohio's Lake Erie Nearshore Waters, Harbors, and Lacustuaries (1997) and Methods of Assessing Habitat in Lake Erie Shoreline Waters Using the Qualitative Habitat Evaluation Index (QHEI) Approach (Version 2.1) (2010)

Electrofishing equipment will be used according to the guidelines listed in the operation and maintenance manual provided by Smith-Root, Inc. Malfunctioning equipment will not be used to collect data. Proper steps will be taken to correct any problems as soon as possible, whether by repairing in the field, at the NEORSD Environmental & Maintenance Services Center, or by contacting the supplier or an appropriate service company.

Fish species difficult to identify will be brought back to the laboratory for verification by Level 3 Fish QDC's, and if necessary, sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Voucher specimens will be collected as described in section (14). Endangered species and those too large for preservation will not be collected as voucher specimens, but will instead be photographed. Photographed vouchers will include features that permit definitive identification of the particular species.

All macroinvertebrate community assemblages from stream locations, except for any replicate samples, will be collected and shipped to an external Level 3 Qualified Data Collector for Benthic Macroinvertebrate Biology Identification for identification and enumeration. All specimens will be identified to the lowest practical taxonomic level as recommended in Ohio EPA's *Biological Criteria for the Protection of Aquatic Life, Volume III* (1987b). All macroinvertebrate specimens will be returned to NEORSD. At least two voucher specimens of each species, when available, will be separated into individual vials and kept as described in section (14). The remaining specimens for each site will be returned in a single container labeled with the site number and collection method and date. All specimens and accompanying chain-of-custody documentation will be retained by NEORSD and stored at the Environmental & Maintenance Services Center for a period not less than ten years.

Water samples obtained for chemical analyses will be collected, preserved (see Section 4), labeled and then placed on ice inside the field truck. The field truck will remain locked at all times when not occupied/visible. Sampling activities, including sample time and condition of surface water sampled, will be entered in a field log book and on the Surface Water Condition Sampling Field Data Form. The samples

will then be delivered immediately to the NEORSD Analytical Services cooler, after which the door to the cooler will be locked, and the samples will be transferred to the custody of Analytical Services. The NEORSD Analytical Services Quality Manual and associated Standard Operating Procedures are on file with Ohio EPA. The Quality Assurance Officer at Analytical Services will send updates, revisions and any information on document control to Ohio EPA as needed.

For benthic and water column chlorophyll *a* sampling, three filtrations will be performed for each sample. A field filtration blank will be submitted for every 20 samples.

Calibration of YSI 600XL, 6600EDS, EXO1, and EXO2 data sondes will be done according to the YSI Environmental Operations Manual. The conductivity will be calibrated first using a 1.413 mS/cm standard. Second, the pH will be calibrated using two different buffers (7 and 10 s.u.). The DO will be calibrated last with an acceptable error of 0.2 mg/L.

Once the 6600EDS or EXO2 sondes are removed from the river following long-term installation, the accuracy of the data that has been collected will be checked by comparing readings taken by the sondes to known standards. If the measurements taken at this time meet quality control goals, all of the data collected since the last calibration will be considered accurate. The acceptable differences for pH and conductivity will be ± 0.3 with pH 7 buffer and $\pm 10\%$ of the conductivity standard, respectively (EPA New England- Region 1, 2005). The acceptable difference for DO will be ± 0.2 mg/L. If the measurements do not meet quality control goals, best professional judgment will be used to decide if any of the data collected during that period may still be accurate. For example, the data collected from the four locations may be plotted on the same graph, and if it appears that the data points are following similar trends, they may be considered accurate. If any data that do not meet quality control goals are used, a rationale for their inclusion will be provided when the data are submitted.

(9) Work Products

Within one year of completion of the project, fish data (species, numbers, weights, pollution tolerances, the incidence of DELT anomalies, IBI or LIBI, MIwb scores), macroinvertebrate data (types and numbers of macroinvertebrates collected and ICI or LICI scores), habitat data (QHEI or L-QHEI raw data and scores) and water chemistry results will be submitted to the Ohio EPA or an Ohio EPA approved data warehouse. Additionally, reports summarizing, interpreting, graphically presenting and discussing the IBI (LIBI, where applicable), MIwb, ICI (LICI, where applicable) and QHEI (L-QHEI, where applicable) scores, chlorophyll *a* results, and any excursions from water quality standards may be prepared for internal use.

(10) Qualified Data Collectors

The following Level 3 Qualified Data Collectors (QDC) will be involved with this study:

Name	Address	Email Address	Phone Number	QDC Specialty(s)
Hannah Boesinger	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	boesingerh@neorsd.org	216-641-6000	QDC – 01374 CWQA
Seth Hothem ¹	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	hothems@neorsd.org	216-641-6000	QDC - 00010 CWQA/FCB/SHA/ BMB
Jillian Knittle	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	knittlej@neorsd.org	216-641-6000	QDC – 00512 CWQA/SHA/BMB
Ron Maichle	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	maichler@neorsd.org	216-641-6000	QDC - 00145 CWQA/SHA/BMB
Mark Matteson	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	mattesonm@neorsd.org	216-641-6000	QDC – 01020 CWQA/FCB/SHA
Denise Phillips	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	phillipsd@neorsd.org	216-641-6000	QDC – 01203 CWQA
Francisco Rivera	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	riveraf@neorsd.org	216-641-6000	QDC - 00262 CWQA/SHA
Eric Soehnlen	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	soehnlene@neorsd.org	216-641-6000	QDC – 01030 CWQA/SHA/BMB
Justin Telep	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	telepj@neorsd.org	216-641-6000	QDC – 01304 CWQA
Cathy Zamborsky	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	zamborskyc@neorsd.org	216-641-6000	QDC - 00009 CWQA/SHA
Jonathan Brauer ²	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	brauerj@neorsd.org	216-641-6000	QDC – 00663 SHA
Donna Friedman ²	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	friedmand@neorsd.org	216-641-6000	QDC – 01031 SHA
Kelsey Amidon ²	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	amidonk@neorsd.org	216-641-6000	QDC – 01091 CWQA
Albert Remley ³	2526 Regency Road, Suite 180 Lexington, Kentucky 40503	bremley@thirdrockconsultants.com	859-977-2000	QDC – 00837 BMB

¹ NEORSD Lead Project Manager

The following is a list of persons not qualified as Level 3 QDCs who may be involved in the project. Prior to the start of sampling, the project managers will explain to each individual the proper methods for sampling. Sampling will only be completed under the direct observation of a QDC. The lead project manager will be responsible for reviewing all reports and data analysis prepared by qualified personnel prior to completion.

² See acknowledgement letter for conducting QHEIs and water chemistry sampling (Appendix F)

³Benthic Macroinvertebrate Identification

Name	Address	Email Address	Phone Number
Lindsay Baker	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	bakerl@neorsd.org	216-641-6000
Kevin Fitzgibbons	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	fitzgibbonsk@neorsd.org	216-641-6000
Rae Grant	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	grantr@neorsd.org	216-641-6000
Alex Johnson	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	johnsonalex@neorsd.org	216-641-6000
Mario Meany	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	meanym@neorsd.org	216-641-6000
Carrie Millward	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	millwardc@neorsd.org	216-641-6000
Daniel Neelon	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	neelond@neorsd.org	216-641-6000
Joseph Schiel	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	schielj@neorsd.org	216-641-6000
Frank Schuschu	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	schuschuf@neorsd.org	216-641-6000
William Stanford	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	standfordw@neorsd.org	216-641-6000
Wolfram von Kiparski	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	vonkiparskiw@neorsd.org	216-641-6000
Theresa Walsh	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	walsht@neorsd.org	216-641-6000
Kathryn DeFranco	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	defrancok@neorsd.org	216-641-6000
Michael Meaney	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	meaneym@neorsd.org	216-641-6000
Mikaela Tardivo	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	tardivom@neorsd.org	216-641-6000
Michael Whitacre	4747 East 49 th Street Cuyahoga Hts., Ohio 44125	whitacrem@neorsd.org	216-641-6000

(11) Contract laboratory contact information

All bacteriological and/or chemical sample analysis will be completed by NEORSD's Analytical Services Division. Evidence of NEORSD's Analytical Services current accreditation and method dates can be found in Appendix E. The contact information for NEORSD's Analytical Service Division is:

NEORSD Analytical Services Cheryl Soltis-Muth, Manager 4747 E. 49th Street Cuyahoga Heights, Ohio 44056 soltis-muthc@neorsd.org 216-641-6000

Any fish that is not positively identified in the field, or at NEORSD, will be sent to The Ohio State University Museum of Biological Diversity for verification by the Curator and/or Associate Curator of Fish. Fish will be identified to the species level.

Mr. Marc Kibbey, Associate Curator of Fish 1315 Kinnear Road, Columbus, Ohio 43212 cavender.1@osu.edu / kibbey.3@osu.edu 614-292-7873

Identification of macroinvertebrates for stream locations will be completed by an external Level 3 Qualified Data Collector for Benthic Macroinvertebrate Biology Identification³. Benthic macroinvertebrates will be identified to the lowest practical level as recommended by Ohio EPA (1987b). Contact information for this contractor will be submitted once the contract is awarded.

(12) Copy of ODNR collector's permit

To be submitted once received from ODNR.

(13) Digital Catalog Statement

A digital photo catalog of all sampling locations will be maintained for 10 years and will include photos of the specific sampling location(s), the riparian zone adjacent to the sampling location(s) and the general land use in the immediate vicinity of the sampling location(s).

Print/Signature: Seth Hothem / Sett No. Date: 3/12/2020

(14) Voucher Specimen Statement

NEORSD will maintain a benthic macroinvertebrate and fish voucher collection which includes two specimens, or appropriate photo vouchers, of each species or taxa collected during the course of biological sampling from any stream within the NEORSD's service area. When benthic macroinvertebrates from multiple surface waters are collected within the same year and identified by the same QDC, one voucher collection will be created to represent the specimens collected from those streams. When fish specimens from multiple surface waters are collected within the

³ A letter of acknowledgement of the macroinvertebrate identification responsibilities will be added as an addendum to this study plan, in Appendix F, upon finalization of the macroinvertebrate identification contract.

same year, one voucher collection will be created to represent the specimens collected from those streams. A separate collection for each sampling event will not be maintained.

NEORSD will provide specimens or photo vouchers to the Director upon request. This collection will be stored at the NEORSD laboratory in the Environmental and Maintenance Services Center.

Print	Signature:	Seth Hothem/	Sea Hu		Date:	3/12/2020
15)	Sample Loc	cation Statemen	t			
	including b location lat general loc	out not limited titude and long cation information	available any and to; the name of gitude, sampling lon, the U.S. geol data collection at ear	the water bod ocation river of ogical survey	ly sampled mile when HUC 8 r	d, sampling re possible,
Print	/Signature:	Seth Hothem/	Set to	>	Date:	3/12/2020
16)	Additional	L3 Data Collect	tor Statement			
	The Lead types.	Project Manage	er for all stream loc	ations is approv	ved for all	project data
Print	/Signature:	Seth Hothem/	Sen you		Date: 3	12/2020
17)	Trespassing	g Statement				
	the Revis	sed Code (crir	d or pleaded guilty minal trespass) or vious five years.	to a Violation a substantial	of section ly similar	2911.21 of municipal
Print	/Signature:	Seth Hothem/	Sett How		Date:	3/12/2020
Prin	:/Signature:	Jillian Knittle/	printer		Date: _	3/14/2020

Print/Signature: Ron Maichle/
Print/Signature: Mark Matteson/
Print/Signature: Denise Phillips/
Print/Signature: Francisco Rivera/
Print/Signature: Eric Soehnlen/
Print/Signature: Justin Telep/
Print/Signature: Cathy Zamborsky/
Print/Signature: Cathy Zamborsky/
Date: 3/13/2020
Date: 3/13/2020
Date: 3/13/2020
Date: 3/13/2020
Date: 3/13/2020

Appendix A

ChieEA	FISH DATA SHEET	Sheet ID For Office U		New Station (requires lat/long & county	Mix	Zone		Paş	зе	_of	·
Station ID		River Code		RM	Date			_Tiı	me_		
				Location _							
Lat	Long	3 ———	County		ALP _		_ Tir	ne F	ishe	d	
Crew		Netter	Oth	ers		Sam	pler '	Турє	·		
Distance	Flow	Temp. C	Secchi	Source	Project_						
	Number Tot Weighed Cour			Weights Cou	ints	D efor	mities,	, Erosi	NOM ions, L ELTs o	Lesion	ns, Tumo
						D	Е	L	T	M	*
V 10x	<u> </u>										
						D	Е	L	Т	М	*
V 10x	<u> </u>					_					
						D	Е	L	Т	M	*

V 10x	·					D	Е	L	Т	M	*
V 10x											
						D	E	L	Т	M	*
V 10x											
						D	Е	L	Т	M	
V 10x	ί					\pm					
						D	Е	L	Т	M	*
V 10x	:					D	Е	L	Т	M	*
						-					
V 10x											
						D	Е	L	Т	M	*
V						_					

^{*} A-anchor worm; B-black spot; C-leeches; F-fungus; N-blind; P-parasites; S-emaciated, W-swirled scales Y-popeye; Z-other

	Fine	s Code	Number Weighed	Total Counted	Total Weight	WeightsCour	nts		Pa	ige -		- of -	
10	1,1112	Couc	Vergnea	Counted	weight			D	Е	L	Т	M	*
ŀ	V	10x											
11	•	10x						D	Е	L	Т	M	*
**													
ŀ	V	10x						D	Е	L	Т	M	*
12													
	V	10x											
13								D	Е	L	Т	M	*
Ì	V	10x											
14								D	Е	L	T	M	*
	V	10x											
ا.								D	Е	L	Т	М	*
15				I									
ŀ	V	10											
ł	V	10x						D	Е	L	T	M	*
16													
ŀ	V	10x	<u> </u>					D	E	I.	T	M	*
17											-		
	V	10x		I						-			
18								D	Е	L	T	M	*
	V	10x											
19								D	Е	L	Т	M	*
ŀ	V	10x						_					
		1	<u> </u>					D	Е	L	Т	M	*
20			1	1	-								
	V	10											
ŀ	Y	10x						D	E	L	T	M	*
21								-					
	V	10x											

NEORSD Macroinvertebrate Field Sheet

Stream:					_ Riv	er Mile:			Year:	
Location: Drainage Area (mi²): Latitude (°N)/Loc				Pro	oject:					
Drainage Area (r	mi ²):	Latitud	e (°N)/Loi	ngitude	(°W):					
			Hester-D	Dendy I	Deplovme	nt Inform	ation			
Install Date:										
Current at HD (f						_				
Reinstall Date:				Cı	rew (QDC	Circled):				
Current (fps):										
Reinstall Date:				C1	rew (QDC	Circled):				
Current (fps):		Depth (c	em):			_Reason:				
			Samj	pling/R	etrieval I	nformatio	n			
Sampling Metho	d:	Hester-Dend	y	Dipnet	Sui	rber	Core	Other	r:	
Sample ID	Sample ID: HD:			Qualit	tative:		O	ther:		
Sampling Date:				Crew (QDC Circ	cled):				
HD Condition-	C	(f., _).		D 41- 4	()		W-4 T			9E / 9C
HD Condition-		(fps): of HD Blocks			·					
	Disturbe									
	Debris:	Yes		Co	omments:					
	Silt/Solid	ds: Nor	ne	Slight	Mo	derate	Heavy			
Dipnet-	Time Sa	mpled (min):		X	Number	r of Crew:	=	Total	l (min):	
		Habitats Sampled:								
			Ri	ver Sar	npling Co	onditions				
Flow Condition:		Flood	Above N				Interstiti	al	Intermittent	Dry
Current Velocity	:	Fast	Moderate	•	Slow	Non	-detect			
Channel Morpho	ology:	Natural	Channeli	zed	Channe	lized (Reco	overed)	Impo	unded	
Bank Erosion:		Extensive	Moderate	÷	Slight	None	e			
Riffle Developme	ent:	Extensive	Moderate	÷	Sparse	Abse	ent			
Riffle Quality:		Good	Fair		Poor		Embedd	ed:	Yes	No
Water Clarity:		Clear	Murky		Turbid		Oth	er:		
Water Color:		None	Green		Brown	Grey	Oth	er:		
Canopy over HD) <i>:</i>	Open	75 %		50 %	25	% Clo	sed		
Comment Section	on:									
OEPA Commen	t Field Co	odes:								
Samples Analyz	ed By:				QDC#	:	Date:			

Physical Characteristics

Substrate Characteristics					Predominant Land Use (Left, Right or Both)				th)
	_	ø	_		Forest	Urt	an		Open Pasture
	Pool	Riffle Faits	Run	ts	Shrub	Res	idential	/Park	Closed Pasture
	H ::	Omits Riff Units	_	Units	Old Field	Miı	ning/Cor	nstruction	
Bedrock]	Rowcrop	We	tland		
Boulder				1	Industrial	Oth	er		
Rubble				1					
Coarse Gravel				1	Predominant	Ripari	an Vege	etation	
Fine Gravel				1	Left	Rig	_	Type	
Sand				1				Large Ti	rees
Silt				1				Small T	rees
Clay/Hardpan				1				Shrubs	
Detritus				1				Grass/W	veeds veeds
Peat				1				None	
Muck				1					
Other				1	Margin Habi	tat			
Macrophytes				1	Margin Quali		Good	Fair	Poor
Algae				1	Undercut		Ro	oot Mats	Tree Roots
Artifacts				1	Grass		W	ater Willow	Woody Debris
Compaction (F,M,S)	\Box			1	Shallows		Cl	ay/Hardpan	Macrophytes
Depth (Avg)				1	Rip Rap			ılkhead	1 7
Width (Avg)				1	Other				
\ U /				4	-				
				Biolo	gical Characte	eristics			
Riffle:							V= Very	Abundant; A= Abund	ant; C= Common; R= Rare
Predominant Org	ganism:					C	overall Am	ount (V=>	151; A= 150-101; C= 100-11; R= 10-1)
Other Common (ns:					/	Porifera, Bryon	zoa
	High	Mode	erate	Low	7		/ /	_	ligochaeta, Hirudinea
•	High	Mode	erate	Low	7		/	Isopoda, Ampl	
·							/	Decapoda, Hy	
Run:								Ephemeroptera	a
Predominant Org	ganism:							Baetidae	
Other Common (Organisı	ns:					/ /	Heptageni	idae, Leptohyphidae, Caenidae
Density:	High	Mode	erate	Low	7			Other	
Diversity:	High	Mode	erate	Low	7		/	Zygoptera, An	isoptera
	_							Plecoptera	
Pool:								Hemiptera	
Predominant Org	ganism:						/	Megaloptera, N	Neuroptera
Other Common (Organisı	ns:						Trichoptera	
Density:	High	Mode	erate	Low	7			Hydropsy	ychidae
Diversity:	High	Mode	erate	Low	7		/	Hydropti	lidae, Leptoceridae
·								Other	
Margin:								Coleoptera	
Predominant Org	ganism:							Elimidae	
Other Common (Organisı	ns:						Other	
	High	Mode	erate	Low	7			Diptera	
•	High	Mode		Low				Chironon	nidae
•	Č							Other	
Other Notable Collec	tions:						/	Gastropoda, B	ivalvia
								Other	

Field Narrative Rating: E VG G MG F P VP

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

Stream & Location:	RM:_	_•_ <i>Date:</i>		_
Scorers Full Name & Affiliation:_	Northeast	Ohio Regional S		,
River Code:=STORET #:(NAD 83 - decimal °) =	/8	<u>' </u>	Office verified location	
1] SUBSTRATE Check ONLY Two substrate TYPE BOXES; estimate % or note every type present Check O	NE (<i>Or 2 8</i>	0 ,		
BEST TYPES POOL RIFFLE OTHER TYPES POOL RIFFLE ORIGIN		QUAL		
□ □ BLDR /SLABS [10] □ □ □ HARDPAN [4] □ □ LIMESTONE [1] □ □ BOULDER [9] □ □ DETRITUS [3] □ □ TILLS [1]	SILT		•	ate
□ □ COBBLE [8] □ □ MUCK [2] □ WETLANDS [0] □ □ GRAVEL [7] □ □ SILT [2] □ HARDPAN [0]	SILI	☐ NORMAL ☐ FREE [1]		
	OF DE DA	EXTENS	VE [-2]	
NUMBER OF BEST TYPES: 4 or more [2] sludge from point-sources) LACUSTURINE [0]	AN NE	MODERA S NORMAL	TE [-1] Maximu . [0] 20	um
Comments 3 or less [0] SHALE [-1]		□ NONE [1]		
COAL FINES [-2]				
2] ///STREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common quality; 2-Moderate amounts, but not of highest quality or in small amounts	n of margin	al AMO	UNT	
quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional	large	Check ONE (C		
UNDERCUT BANKS [1] POOLS > 70cm [2] OXBOWS, BACKWATE		MODERATE		
OVERHANGING VEGETATION [1] ROOTWADS [1] AQUATIC MACROPHYT SHALLOWS (IN SLOW WATER) [1] BOULDERS [1] LOGS OR WOODY DEE		☐ SPARSE 5-< ☐ NEARLY AB	25% [3] SENT <5% [1]	
ROOTMATS [1]	J. [1]		Cover	
Comments			Maximum 20	
31 CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average)				
SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY				
☐ HIGH [4] ☐ EXCELLENT [7] ☐ NONE [6] ☐ HIGH [3] ☐ MODERATE [3] ☐ GOOD [5] ☐ RECOVERED [4] ☐ MODERATE [2]				
□ LOW [2] □ FAIR [3] □ RECOVERING [3] □ LOW [1]			Channel	
□ NONE [1] □ POOR [1] □ RECENT OR NO RECOVERY [1] Comments			Maximum	
			20	
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (On River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY	•	(& average)		
EROSION WIDE > 50m [4] FOREST, SWAMP [3]	L R_	CONSERVATIO	N TILLAGE [1]	
☐ NONE / LITTLE [3] ☐ MODERATE 10-50m [3] ☐ ☐ SHRUB OR OLD FIELD [2]		URBAN OR INI	DUSTRIAL [0] STRUCTION [0]	
☐ ☐ HEAVY / SEVERE [1] ☐ ☐ VERY NARROW < 5m [1] ☐ ☐ FENCED PASTURE [1]		e predominant la		
□ □ NONE [0] □ OPEN PASTURE, ROWCROP [0]		00m riparian.	Riparian	
Comments		ı	Maximum 10	
5] POOL / GLIDE AND RIFFLE / RUN QUALITY		Recreation	Potential	
MAXIMUM DEPTH CHANNEL WIDTH CURRENT VELOCITY Check ONE (ONLY!) Check ONE (Or 2 & average) Check ALL that apply			Contact	
□ > 1m [6] □ POOL WIDTH > RIFFLE WIDTH [2] □ TORRENTIAL [-1] □ SLOW [1] □ 0.7-<1m [4] □ POOL WIDTH = RIFFLE WIDTH [1] □ VERY FAST [1] □ INTERSTIT	101 541	Secondar	y Contact	
\square 0.4-<0.7m [2] \square POOL WIDTH < RIFFLE WIDTH [0] \square FAST [1] \square INTERMIT	ΓENT [-2]	(circle one and co	omment on back)	
\square 0.2-<0.4m [1] \square MODERATE [1] \square EDDIES [1] \square < 0.2m [0] Indicate for reach - pools and rifi			Pool / Current	
Comments			Maximum 12	
Indicate for functional riffles; Best areas must be large enough to support	a popula	tionNO	RIFFLE [metric=(Λ1
of riffle-obligate species: Check ONE (Or 2 & average). RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFF	FIF/RU	<u>□NO</u> N EMBEDDI		<u> </u>
☐ BEST AREAS > 10cm [2] ☐ MAXIMUM > 50cm [2] ☐ STABLE (e.g., Cobble, Boulder) [2]		ONE [2]		
□ BEST AREAS 5-10cm [1] □ MAXIMUM < 50cm [1]	Пм	OW [1] ODERATE [0]	Riffle /	
[metric=0] Comments	□ E	XTENSIVE [-1]	Run Maximum	
61 CDADIENT			8	≥
DRAINAGE AREA MODERATE [6-10]	%GLIDE	=	<i>Gradient</i> Maximum	
/ mi2\ \ \ HIGH - VERY HIGH [10-6]	%RIFFLE	=:()	10	

AJ SAMPLI Check A	ED REACH ALL that apply	Comment RE: Reach consistency/	Is reach typical of steam?, Recreation	n/Observed - Inferred, Other	r/Sampling observations, Concerns, Acc	ess directions, etc.
METHOD ☐ BOAT	STAGE 1st -sample pass- 2nd					
 WADE L. LINE OTHER	☐ HIGH ☐ ☐ ☐ UP ☐ ☐ NORMAL ☐					
DISTANCE	☐ LOW ☐ ☐ DRY ☐					
□ 0.5 Km □ 0.2 Km □ 0.15 Km □ 0.12 Km □ 0.12 Km □ OTHER meters	CLARITY 1stsample pass 2nd < 20 cm ☐ 20-<40 cm ☐ 40-70 cm ☐ > 70 cm/ CTB ☐ SECCHI DEPTH	☐ INVASIVE MACROPHYTES ☐ EXCESS TURBIDITY ☐ DISCOLORATION ☐ FOAM / SCUM	DJ MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED	Circle some & COMMENT	EJ ISSUES WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPs-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE	FI MEASUREMENTS x width x depth max. depth x bankfull width bankfull x depth
CANOP	· · · · · · · · · · · · · · · · · · ·	☐ NUISANCE ODOR	RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED		FALSE BANK / MANURE / LAGOON WASH H ₂ 0 / TILE / H ₂ 0 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT	W/D ratio bankfull max. depth floodprone x ² width entrench. ratio
☐ 10%-<30% ☐ <10%- CLO	CJ RECRI	EATION AREA DEPTH POOL: □>100ft² □>3ft	IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE		PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY	Legacy Tree:

Stream Drawing:

ChieFPA Primary Headwater Habitat Evaluation Form HHEI Score (sum of metrics 1, 2, 3):

SITE NAME/LOCATIONSITE NUMBER			IACE AREA (m:2)
LENGTH OF STREAM REACH (ft)			
DATE SCORER			
NOTE: Complete All Items On This Form			
STREAM CHANNEL NONE / NAT MODIFICATIONS:	URAL CHANNEL	☐ RECOVERING ☐ RI	ECENT OR NO RECOVERY
BLDR SLABS [16 pts]	ant substrate types found (Max of 8). F RCENT TYPE SILT [3 pt] LEAF PAC		OXES A & B. PERCENT POINTS
☐ ☐ COBBLE (65-256 mm) [12 pts]	CLAY or H. CLAY or H. MUCK [0 p	L [3 pts]	Substrate Max = 40
Total of Percentages of Bldr Slabs, Boulder, Cobble, Bedrock SCORE OF TWO MOST PREDOMINATE SUBS		entage NUMBER OF SUBSTRAT	(B) A + B
 Maximum Pool Depth (Measure the many evaluation. Avoid plunge pools from road > 30 centimeters [20 pts] > 22.5 - 30 cm [30 pts] > 10 - 22.5 cm [25 pts] 	culverts or storm water pipes) (Che	eck ONLY one box): 0 cm [15 pts]	Max = 30
3. BANK FULL WIDTH (Measured as the > 4.0 meters (> 13') [30 pts] > 3.0 m - 4.0 m (> 9' 7" - 13') [25 pts] > 1.5 m - 3.0 m (> 9' 7" - 4' 8") [20 pts]	average of 3-4 measurements)	•	
COMMENTS	AV	ERAGE BANKFULL WIDTH	(meters):
RIPARIAN ZONE AND FLOODP RIPARIAN WIDTH	This information must also LAIN QUALITY ☆NOTE: River L FLOODPLAIN QUALITY		ng downstream☆
L R (Per Bank) Wide >10m Moderate 5-10m	L R (Most Predominant per B Mature Forest, Wetland Immature Forest, Shrub of Field	or Old	nservation Tillage pan or Industrial pen Pasture, Row Crop
☐ ☐ Narrow <5m ☐ ☐ None COMMENTS	Residential, Park, New F		ning or Construction
FLOW REGIME (At Time of Eval Stream Flowing Subsurface flow with isolated pool COMMENTS	s (Interstitial)	pist Channel, isolated pools, y channel, no water (Ephen	
SINUOSITY (Number of bends property) None 0.5	er 61 m (200 ft) of channel) (Check 0 1.0		3.0 >3
STREAM GRADIENT ESTIMATE Flat (0.5 ft/100 ft) Flat to Moderate	☐ Moderate (2 ft/100 ft) ☐ f	Moderate to Severe	Severe (10 ft/100 ft)

ADDITIONAL STREAM INFORMATION (This Information Must Also be Comp	eleted):
QHEI PERFORMED? - Tyes No QHEI Score(If	Yes, Attach Completed QHEI Form)
DOWNSTREAM DESIGNATED USE(S)	
☐ WWH Name:	Distance from Evaluated Stream
CWH Name:	Distance from Evaluated Stream
EWH Name:	Distance from Evaluated Stream
MAPPING: ATTACH COPIES OF MAPS, INCLUDING THE ENTIRE WAT	ERSHED AREA. CLEARLY MARK THE SITE LOCATION
USGS Quadrangle Name: NRCS Sc	oil Map Page: NRCS Soil Map Stream Order
County: Township / City:_	
MISCELLANEOUS	
Base Flow Conditions? (Y/N): Date of last precipitation:	Quantity:
Photograph Information:	
Elevated Turbidity? (Y/N): Canopy (% open):	
Were samples collected for water chemistry? (Y/N): (Note lab sample n	o. or id. and attach results) Lab Number:
Field Measures: Temp (°C) Dissolved Oxygen (mg/l) pH	(S.U.) Conductivity (µmhos/cm)
Is the sampling reach representative of the stream (Y/N) If not, please exp	plain:
Additional comments/description of pollution impacts:	
BIOTIC EVALUATION	
Performed? (Y/N): (If Yes, Record all observations. Voucher collections ID number. Include appropriate field data sheets from	s optional. NOTE: all voucher samples must be labeled with the sit om the Primary Headwater Habitat Assessment Manual)
Fish Observed? (Y/N) Voucher? (Y/N) Salamanders Observed? (Frogs or Tadpoles Observed? (Y/N) Voucher? (Y/N) Aquatic Macroin	
Comments Regarding Biology:	

DRAWING AND NARRATIVE DESCRIPTION OF STREAM REACH (This <u>must</u> be completed):

Include important landmarks and other features of interest for site evaluation and a narrative description of the stream's location

Lake / Lacus	stuary (Le	ntic) Ql	HEI Fie	ld She	eet Ohi	O En	vironmental otection Agen	cy QHE	El Score:	
RIVERCODE	RIV	ERMILE		WATER	RBODY	-	DIST	ANCE AS	SESSED (m):	
DATESCORER										
SCORER	LAI	•	LONG	·	COMM	IENI -				
1] SUBSTRATE (Ch	eck ONLY Two	Substrate T	YPE BOXE	S; Estima	te % or note ev	ery typ	e present);	LAKE:	LACUSTUARY	/ :
TYPE	SHORE BOTTOM		SHC	RE BOTTOM	SUBSTRATE O	RIGIN			TE QUALITY	
D-BLDR/SLABS[7]		-HARDE			Check ONE (or 2 &	RAVERA	l	Check ONE (a	2& AVERAGE)	Substrate
D-BOULDER[10]		□□-BEDR				-[1]	S L T:		DERATE [-1]	
O-COBBLE [8]	\square	DD-DETRI			- WETLANDS	smi		-SILT NO		
GRAVEL [7]					- LACUSTUA	RINE[1]		□-SLTFR		ي
□□-SAND[6]			[2]		J SANDSTON			□-aay f		Max 20
NOTE: Ignore sludge I		m point-sourc	es,		☐-RIP/RAP[1]		SILT ORIGIN:	-INDUST		
score on natural subst NUMBER OF SUBST	rates	- 5 or More [2]	1		□-HARDPAN[□-SHALE[-1]	OJ	ORIGIN.	U-ORGAN	• • • • •	
NUMBER OF SUBS II	RAIE I TPES	-4 or Less [0]			D-COAL/ORE	r-21			'l	
COMMENTS:	_		-			1				
		500					B401:::-			
2] COVER TYPES	DADOW: C		neck All That A		DD00/ 044				One or check2 and	AVERAGE) Cover
☐-OFF-SHORE SAND ☐-OVERHANGING VE		-DEEPWATER			• •		I-EXTENSIV I-MODERAT		.	
SHALLOWS (ON BE		-ROULDERS (*			GED AQUATIC VE RWOODY DEBRIS	1 4 IIL	J-SPARSE 5		'	
D-ROOTMATS[1]		-SAND BEACH	-	I-LOGSON I-GRAVELI			J-NEARLY A		6[1]	
COMMENTS:		-SAINE BEAG	1]1]	-GWVIII	DEACHILI					Max 20
3] SHORELINE MOI	RPHOLOGY (C	neck ONLY one	PER category	or check 2 a	and AVERAGE)	ļ.	MODIFICATION	ONS OF SAM	PLED SHOREL	NE
SHORE SINUOSITY	DEVELOPME		DIFICATION		STABLITY	_ i	O-CEMENT	ED[-1]	□-STEEL BUL	KHEADS [-2
□нсн[2]	O-EXCELLE		-NONE [7]		□HIGH [3]	- [1]	-RIP RAPP		□HSLANDS[1]	
□-MODERATE[4]	□-GOOD [5]		-RECOVERE		MODERATE [2	ין י	-RAILROAI		□-DIKES [-1]	
□-10W[3] □-10NE[1]	□-FAIR[3] □-POOR[1]		-RECOVERII -RECENTOI		□-LOW[1]		-DREDGE		□-BANKSHAP	
DHOKE	المحمدرانا		RECOVERY						□-WOOD PILIN	VGS [1]
CHODEA- DOTTOM C	ODEMODBLIO				E		MODIFICA			
SHORE to BOTTOM S					5 measures)		□!-SHPCHA	NNEL[-2]		
☐-SLOPE < 15 deg.[0] ☐-SLOPE < 25 deg.[1]			□-<50 cm		□->400 - 500 cm □->500 - 900 cm [ShoreLin
☐-SLOPE > 25 deg.[3]		g.[0]			>500-500 am [1] □->900 am [1]	4				
LI-SCOPE > 20 deg.[5]	<u> </u>		□->200-4		>300 dit[i]	;				- IL
COMMENTS:				· oo an [o]		□ ;				Max 20
	AND DANK E				2 - 4 4450400		Shore R	ight Looking l	East or South on L	ake 🛨
4] RIPARIAN ZONE	AND BANK E	RUSIUN (Che	CK ONE BOX F	EK bank or	2 and AVERAGE)		★ Shore R	ight Looking	Toward Lake in La	custuary ★
RIPARIAN WIDTH L R (PerBank)	ı Rı	SHOR Most Predominant		LITY (PAST	T100 FOOT RIPAR	IAN		BANK E		District
□ □-WDE>50m [4]		FOREST, WE		E [3]		/ATION	TILLIAGE [1]		ONEUTILE [3]	Riparian
-MODERATE 10		SHRUBORO			-URBANOF				ODERATE [-1]	
NARROW 5-10	**	-VINEYARD, O			-OPENPAS				AVY/SEVERE IS	
-VERY NARROV	* * 1	FENCED PAS			-MINING/CO		-			Max 10
-NONE[0]				VFIELD [1]	□ □-DKEDWE	ETLAND	(a)			
COMMENTS										
5] AQUATIC VEGET (Score all for observed about								NO AQUA	ATIC VEGETATION	DN = 0
-Pond Lilles (NY -Pond Weed (PC			je (CYPER Jsh (SCIRP		-Wild Celery -Waterweed			Wild F	Rice (ZIZANIA)	Vegetatio
(Score all for observed about	undance: ABUNDA	NT = [-2]; COMM	10N = [-1]; FE	EW = [0])						
-Purple Looses	trifeRee	d Grass	-Eurasla	n Milfoli	Cattails	AI	gae (mats)	Alga	e (planktonic)	ب ا
COMMENTS										Max 30

Is the Sampling Reach Represer	ntative of Area Ha	abitat? (Y/N) If No	t, Explain:			
Depth measures: Zebra Mussel /Quagga Mussel /	Coverage D	->60%	6 □-25->10% □-<10	->1%		
First Sampling Pass: Second Sampling Pass: Third Sampling Pass:					Subjective Rating (1 – 10)	Aesthetic Ratin
WATERBODY MEASUREMENT	S: AVERA	GE WIDTH:	AVERAGE DEPTH:_	Maxim	Photos:	
		DRAW	ING OF SITE:	North Arrow:		

NEORSD Surface Water Condition Sampling Field Data Form

Stream:	Date:		Co	ollectors:		
Gage Station and ID	on and ID: Daily Mean			Discharge: _		ft³/sec
Water Quality Meters	s Used:					
	Partly Cloudy Over	rcast Li	ght Rain/Show	vers Heav	y Rain	
Flow: Dry Int	ermittent Minimal					
HD Status:	OK Other:					
Color: Clear	Muddy					
Odor: Normal	Petroleum An	aerobic	Sewage	Chemical	Other:	
Surface Coating:	None Foam	Oily	Scum	Other:		
Field Parameters:	Conductivity (µmhos/o	em):		Sp. Cond. (µmh	os/cm):	
				D.O. (9	%):	
	Temperature ((°C):				
Turbidity 1 (NTU)	: Turbic	lity 2 (NTU)):	Average	(NTU):	
General Comments:						
Reporting sig figs: (Cond	and DO% - 1) (pH, DO 1	ng/L, and C	hlor/BGA-PC	- 0.1) (Temp- 0.	01)	
Weather: Clear	Partly Cloudy Over	rcast Li	ght Rain/Show			
Flow: Dry Int	ermittent Minimal	Baselin	ne/Normal	Elevated I	Flood	
HD Status:	OK Other:					
<u>Color:</u> Clear	Muddy	Tea	Milky	Other	:	
Odor: Normal	Petroleum An	aerobic	Sewage	Chemical	Other:	
Surface Coating:	None Foam	Oily	Scum	Other:		
Field Parameters:	Conductivity (µmhos/o	cm):				
				D.O. (9	%): <u> </u>	
	Temperature ((°C):			ı.):	
Turbidity 1 (NTU): Turbidity 2 (NTU):						
Turbidity 1 (NTU)	: Turbic	lity 2 (NTU)):	Average	(NTU):	
Turbidity 1 (NTU) General Comme						
	Gage Station and ID Was this sample take Water Quality Meters Fime (hrs): Weather: Clear Steady Rain Flow: Dry Int HD Status: Color: Clear Odor: Normal Surface Coating: Field Parameters: Turbidity 1 (NTU) General Comments: Ceporting sig figs: (Cond Time (hrs): Weather: Clear Steady Rain Flow: Dry Int HD Status: Color: Clear Odor: Normal Surface Coating:	Gage Station and ID: Was this sample taken during or following a w Water Quality Meters Used: Time (hrs): Steady Rain Heavy Snow Melt Flow: Dry Intermittent Minimal HD Status: Color: Clear Muddy Odor: Normal Petroleum An Surface Coating: Turbidity 1 (NTU): General Comments: Ceporting sig figs: (Cond and DO% - 1) (pH, DO r Time (hrs): Rive Weather: Clear Partly Cloudy Over Steady Rain Heavy Snow Melt Flow: Dissolved Oxygen (mg Temperature (Turbidity 1 (NTU): Ceporting sig figs: (Cond and DO% - 1) (pH, DO r Time (hrs): Rive Weather: Clear Partly Cloudy Over Steady Rain Heavy Snow Melt Flow: Dry Intermittent Minimal HD Status: OK Other: Color: Clear Muddy Odor: Normal Petroleum An Surface Coating: None Foam Field Parameters: Conductivity (µmhos/or Dissolved Oxygen (mg	Gage Station and ID: Was this sample taken during or following a wet weather of Water Quality Meters Used: Time (hrs): Weather: Clear Partly Cloudy Overcast Light Steady Rain Heavy Snow Melt Other: Color: Clear Muddy Tea Odor: Normal Petroleum Anaerobic Surface Coating: None Foam Oily Field Parameters: Conductivity (µmhos/cm): Dissolved Oxygen (mg/L): Temperature (°C): Turbidity 1 (NTU): General Comments: Time (hrs): River Mile (Site) Weather: Clear Partly Cloudy Overcast Lighter Steady Rain Heavy Snow Melt Other: Steady Rain Heavy Snow Melt Other: Color: Clear Muddy Tea Odor: Normal Petroleum Anaerobic Steady Rain Heavy Snow Melt Other: Color: Clear Muddy Tea Odor: Normal Petroleum Anaerobic Surface Coating: Normal Petroleum Anaerobic Surface Coating: Normal Petroleum Anaerobic Surface Coating: None Foam Oily Field Parameters: Conductivity (µmhos/cm): Dissolved Oxygen (mg/L):	Gage Station and ID:	Gage Station and ID:	Gage Station and ID:

Appendix B

Parameter	Additional Name	Test	Unit	2018/2019 Minimum Detection Limit	2018/2019 Practical Quantitation Limit
Alkalinity	Alkalinity	EPA 310.2	mg/L	6.44	16
Mercury	Hg	EPA 245.1	μg/L	0.022	0.05
Ammonia ¹	NH ₃	EPA 350.1	mg/L	0.022	0.05
Nitrite	NO2	EPA 353.2	mg/L	0.010	0.02
Nitrite + Nitrate	NO ₂ + NO ₃	EPA 353.2	mg/L	0.014	0.04
Total Kjeldahl Nitrogen	TKN	EPA 351.2	mg/L	0.247	0.5
Dissolved Reactive Phosphorus	DRP	EPA 365.1	mg/L	0.0135	0.04
Low Level Dissolved Reactive Phosphorus	LLDRP	EPA 365.1	μg/L	2.3	5
Total Phosphorus	Total-P	EPA 365.1	mg/L	0.010	0.020
Chloride	Chloride by IC	EPA 300.0	mg/L	0.71	5
Sulfate	Sulfate by IC	EPA 300.0	mg/L	0.89	5
Silver	Λα	EPA 200.8 ³	μg/L	0.015	0.50
Silver	Ag	EPA 200.8 ⁴	μg/L	0.071	0.5
Aluminum	Al	EPA 200.8 ³	μg/L	2.732	10.00
Aluminum		EPA 200.8 ⁴	μg/L	7.632	20
Arsenic	As	EPA 200.8 ³	μg/L	1.157	5.00
Arsenic		EPA 200.8 ⁴	μg/L	0.267	2
Dogina	Ва	EPA 200.8 ³	μg/L	0.099	0.50
Barium		EPA 200.8 ⁴	μg/L	0.062	0.5
Domillione	Ве	EPA 200.8 ³	μg/L	0.117	0.50
Beryllium		EPA 200.8 ⁴	μg/L	0.058	0.5
6.1.	Ca	EPA 200.8 ³	μg/L	62.845	250.00
Calcium		EPA 200.8 ⁴	μg/L	71.690	250
6 1 :		EPA 200.8 ³	μg/L	0.026	0.50
Cadmium	Cd	EPA 200.8 ⁴	μg/L	0.053	0.5
6 1 1		EPA 200.8 ³	μg/L	0.031	0.50
Cobalt	Со	EPA 200.8 ⁴	μg/L	0.063	0.5
Characa .	6	EPA 200.8 ³	μg/L	0.364	2.50
Chromium	Cr	EPA 200.8 ⁴	μg/L	1.065	2.5
6		EPA 200.8 ³	μg/L	0.382	1.00
Copper	Cu	EPA 200.8 ⁴	μg/L	0.052	0.5
	_	EPA 200.8 ³	μg/L	12.188	25.00
Iron	Fe	EPA 200.8 ⁴	μg/L	30.698	100
.		EPA 200.8 ³	μg/L	39.348	250.00
Potassium	К	EPA 200.8 ⁴	μg/L	112.602	250

Parameter	Additional Name	Test	Unit	2018/2019 Minimum Detection Limit	2018/2019 Practical Quantitation Limit
		EPA 200.8 ³	μg/L	13.347	125.00
Magnesium	Mg	EPA 200.8 ⁴	μg/L	16.536	125
		EPA 200.8 ³	μg/L	0.588	2.00
Manganese	Mn	EPA 200.8 ⁴	μg/L	0.085	0.5
		EPA 200.8 ³	μg/L	0.196	0.50
Molybdenum	Мо	EPA 200.8 ⁴	μg/L	0.052	0.5
		EPA 200.8 ³	μg/L	32.462	250.00
Sodium	Na	EPA 200.8 ⁴	μg/L	31.920	125
		EPA 200.8 ³	μg/L	0.218	2.00
Nickel	Ni	EPA 200.8 ⁴	μg/L	0.116	0.5
	_	EPA 200.8 ³	μg/L	0.062	0.50
Lead	Pb	EPA 200.8 ⁴	μg/L	0.070	0.5
		EPA 200.8 ³	μg/L	0.154	1.00
Antimony	Sb	EPA 200.8 ⁴	μg/L	0.055	0.5
	Se	EPA 200.8 ³	μg/L	3.768	10.00
Selenium		EPA 200.8 ⁴	μg/L	1.419	10
	Sn	EPA 200.8 ³	μg/L	2.690	15.00
Tin		EPA 200.8 ⁴	μg/L	2.002	5
	Sr	EPA 200.8 ³	μg/L	0.134	0.50
Strontium		EPA 200.8 ⁴	μg/L	0.199	0.5
		EPA 200.8 ³	μg/L	0.562	2.00
Titanium	Ti	EPA 200.8 ⁴	μg/L	0.331	1
	_	EPA 200.8 ³	μg/L	0.264	1.00
Thallium	TI	EPA 200.8 ⁴	μg/L	0.099	0.5
		EPA 200.8 ³	μg/L	0.177	5.00
Vanadium	V	EPA 200.8 ⁴	μg/L	3.573	10
	_	EPA 200.8 ³	μg/L	1.155	5.00
Zinc	Zn	EPA 200.8 ⁴	μg/L	1.147	5
Total Metals	Total Metals (calc.)	EPA 200.8	μg/L	μg/L = (Cr μg/L μg/L)+(2)+(Cu μg/L)+(Ni Zn μg/L)
Hardness	Hardness (calc.)	SM 2340B ²	mg/L	O.	= (2.497*Ca 8*Mg mg/L)
Escherichia coli	E. coli	SM9223 Colilert QT (18 & 24 Hour)	MPN/100mL	1 MPN	1 MPN
Chlorophyll a	Chlorophyll a	EPA 445.0	μg/L	0.23	1
Chemical Oxygen Demand	COD	EPA 410.4	mg/L	6.1	20

Parameter	Additional Name	Test	Unit	2018/2019 Minimum Detection Limit	2018/2019 Practical Quantitation Limit
Biological Oxygen Demand	BOD	SM 5210 ²	mg/L	2	N/A
Total Solids	TS	SM 2540 B ²	mg/L	1	5
Total Suspended Solids	TSS	SM 2540 D ²	mg/L	0.5	1
Total Dissolved Solids	TDS	SM 2540 C ²	mg/L	1	5
Turbidity **		EPA 180.1	NTU	0.1	0.2
Field Parameter	Additional Name	Test		(Value Reported	in)
рН		SM 4500 H+B		s.u.	
Conductivity		SM 2510A ²	μs/cm		
Specific Conductivity		SM 2510B ²		μs/cm	
Dissolved Oxygen	DO	SM 4500-0 G	mg/L		
Temperature	Temp	EPA 1701.1 ²	°C		
Turbidity **		EPA 180.1		NTU	

 $^{^{1}}$ Listed MDL/PQL is for undistilled samples. Any samples that require distillation will have a MDL = 0.065 mg/L, PQL = 0.150 mg/L

² <u>Standard Methods for the Examination of Water and Wastewater</u>, Method approved by Standard Methods Committee, 1997. Editorial revisions, 2011.

³ MDLs and PQLs specific to ICP-MS Xseries instrument

 $^{^{\}rm 4}\,{\rm MDLs}$ and PQLs specific to ICP-MS qNOVA instrument

^{**} Turbidity will either be completed in the field or at the laboratory.

Appendix C

The YSI 600XL and 600XLM

Pure Data for a Healthy Planet.®

Economical, multiparameter sampling or logging in a compact sonde

YSI 600XL and 600XLM Sondes

Measure multiple parameters simultaneously

The YSI 600XL and YSI 600XLM compact sondes measure eleven parameters simultaneously:

Temperature

TDS

Conductivity

pН

Specific Conductance

ORP

Salinity

Depth or Level

Resistivity

Rapid Pulse DO (% and mg/L)

Connect with Data Collection Platforms

Either sonde can easily connect to the YSI 6200 DAS (Data Acquisition System), YSI EcoNet™ or your own data collection platform, via SDI-12 for remote and real-time data acquisition applications.

Economical Logging System

The YSI 600XLM is an economical logging system for long-term, in situ monitoring and profiling. It will log all parameters at programmable intervals and store 150,000 readings. At one-hour intervals, the instrument will log data for about 75 days utilizing its own power source. The 600XL can also be utilized in the same manner with user-supplied external power.

- Either sonde fits down 2-inch wells
- Horizontal measurements in very shallow waters
- Stirring-independent Rapid Pulse* dissolved oxygen sensor
- Field-replaceable sensors
- Easily connects to data collection platforms
- Available with detachable cables to measure depth up to 200 feet
- Compatible with YSI 650 Multiparameter Display System
- Use with the YSI 5083 flow cell for groundwater applications

Sensor performance verified*

The 6820 VZ and 6920 VZ sondes use sensor technology that was verified through the US EPA's Environmental Technology Verification Program (ETV). For information on which sensors were performance-verified, turn this sheet over and look for the ETV logo.

To order, or for more info, contact YSI Environmental.

+1 937 767 7241 800 897 4151 (US) www.ysi.com

YSI Environmental +1 937 767 7241 Fax +1 937 767 9353 environmental@ysi.com

Endeco/YSI +1 508 748 0366 Fax +1 508 748 2543 systems@ysi.com

SonTek/YSI +1 858 546 8327 Fax +1 858 546 8150 inquiry@sontek.com

YSI Gulf Coast +1 225 753 2650 Fax +1 225 753 8669 environmental@ysi.com

YS1 Hydrodata (UK) +44 1462 673 581 Fax +44 1462 673 582 europe@ysi.com

YSI Middle East (Bahrain) +973 1753 6222 Fax +973 1753 6333 halsalem@ysi.com

YSI (Hong Kong) Limited +852 2891 8154 Fax +852 2834 0034 hongkong@ysi.com

YSI (China) Limited +86 10 5203 9675 Fax +86 10 5203 9679 heijing@ysi-china.com

YS1 Nanotech (Japan) +81 44 222 0009 Fax +81 44 221 1102 nanotech@ysi.com

ISO 9001 ISO 14001

Yollow Springs, Ohio Faelity

ROX and Rapid Pulse are trademarks and FeaWatch, Pure Data for a Healthy Planet and Who's Minding the Planet? are registered trademarks of YSI Incorporated.

© Printed in USA 0107 E55-01

Sensor with dated with the ETV lagrancer submittee dated left IV program on the 3d 1690/ETV. Information on the prefer some characteristics of New Serve August 1690/ETV were dualing some created from all states, up a problem of 25% at 800/ETV 46% for the property of the 15% at 800/ETV 46% for the 1690/ETV were thought of the 1690/ETV 46% of the 1690/ETV 6600 at 1690/ETV 4600 at 1690/ETV 6600 at

YS1 incorporated
Who's Minding
the Planet?

YSI 600XL & 600XLM Sensor Specifications

	Range	Resolution	Accuracy
Dissolved Oxygen & Saturation ETV 6562 Rapid Pulse* Sensor*	0 to 500%	0.1%	0 to 200%: ±2% of reading or 2% air saturation, whichever is greater; 200 to 500%: ±6% of reading
Dissolved Oxygen mg/L 6562 Rapid Pulse" Sensor*	0 to 50 mg/L	0.Q1 mg/L	0 to 20 mg/L: ± 0.2 mg/L or 2% of reading, whichever is greater; 20 to 50 mg/L; ±6% of reading
Conductivity* 6560 Sensor* ETV	0 to 100 mS/cm	0.001 to 0.1 mS/cm (range dependent)	±0.5% of reading + 0,001 m\$/cm
Salinity	0 to 70 ppt	0.01 ppt	±1% of reading or 0.1 ppt, whichever is greater
Temperature 6560 Sensor* ETV	-5 to +50°C	0.01°C	±0.15°C
pH 6561 Sensor* ETV	Ø to 14 units	0.01 unit	±0.2 unit
ORP	+999 to +999 mV	0.1 mV	±20 mV
Depth & Level Medium Shallow Vented Level	0 to 200 ft, 61 m 0 to 30 ft, 9.1 m 0 to 30 ft, 9.1 m	0.001 ft, 0.001 m 0.001 ft, 0.001 m 0.001 ft, 0,001 m	±0,4 ft, ±0.12 m ±0,06 ft, ±0.02 m ±0,01 ft, 0.003 m

Report outputs of specific conductance (conductivity corrected to 25°C), resistivity, and total dissolved solids are also provided. These values are automatically calculated from conductivity according to algorithms found in Standard Methods for the Examination of Water and Wastewater (ed 1989).

YSI 600XL	YSI 600XL & 600XLM Sonde Specifications				
Medium		Fresh, sea or polluted water			
Temperature	©perating Storage	-5 to +50°C -10 to +60°C			
Communications		RS-232, SDI-12			
Software		EcoWatch*			
Dimensions.	Diameter tength Weight	1.65 in, 4.19 cm 1.65 in, 4.9 cm 16 in, 40.6 cm 21.3 in, 54.1 cm 1.3 lbs, 0.59 kg 1,5 lbs, 0.69 kg			
Power	External	12 V DG			

Internal (600XIM only) 4 AA size alkaline batteries

YSI model 5083 flow cell and 600XL. This is an ideal combination for groundwater applications.

HI 98129

Combo pH/EC/TDS/Temperature Tester with Low Range EC

Description

The HI 98129 Combo waterproof tester offer high accuracy pH, EC/TDS and temperature measurements in a single tester! No more switching between meters for your routine measurements. The waterproof Combo (it even floats) has a large easy-to-read, dual-level LCD and automatic shut-off. pH and EC/TDS readings are automatically compensated for the effects of temperature (ATC). This technologically advanced tester has a replaceable pH electrode cartridge with an extendable cloth junction as well as an EC/TDS graphite electrode that resists contamination by salts and other substances. This gives these meters a greatly extended life. Your tester no longer needs to be thrown away when the pH sensor is exhausted.

The EC/TDS conversion factor is user selectable as is the temperature compensation coefficient (ß). Fast, efficient, accurate and portable, the Combo pH, EC/TDS and temperature tester brings you all the features you've asked for and more!

Specifications

Range	pН	0.00 to 14.00 pH
Range	EC	0 to 3999 μS/cm
Range	TDS	0 to 2000 ppm
Range	Temperature	0.0 to 60.0°C / 32 to 140.0°F
Resolution	pН	0.01 pH
Resolution	EC	1 μS/cm
Resolution	TDS	1 ppm
Resolution	Temperature	0.1°C / 0.1°F
Accuracy	pН	±0.05 pH
Accuracy	EC/TDS	±2% F.S.
Accuracy	Temperature	±0.5°C / ±1°F
Temperature		pH: automatic; EC/TDS: automatic with ß adjustable
Compensation		from 0.0 to 2.4% / °C
Calibration	pН	automatic, 1 or 2 points with 2 sets of memorized
		buffers
		(pH 4.01 / 7.01 / 10.01 or 4.01 / 6.86 / 9.18)
Calibration	EC/TDS	automatic, 1 point
TDS Conversion Factor	or	adjustable from 0.45 to 1.00
pH Electrode		HI 73127 (replaceable; included)
Environment		0 to 50°C (32 to 122°F); RH max 100%
Battery Type / Life		4 x 1.5V / approx. 100 hours of continuous use;
		auto-off after 8 minutes of non-use
Dimensions		163 x 40 x 26 mm (6.4 x 1.6 x 1.0")
Weight		100 g (3.5 oz.)

HQ30d Portable pH, Conductivity, Dissolved Oxygen (DO), ORP, and ISE Multi-Parameter Meter

★★★★★ 5/5 韓

Read 1 mylovr White a review # ollow this product

Portable meter measures critical water quality parameters - without the need for multiple

Single liquit channel for flexible measurement of pH, Conductivity, Dissolved Oxygen (DO), BOD, ORP, Ammonia, Ammoniam, Fluoride, Chloride, Sodium, and temperatures any intelliCALTM swart probe

Intuitive user interface for simple operation and accurate results.

Guidant calavesion and check standard routines reduce calibration errors. Stabilization

Trust your measurements - intellICAL. The smart probes store all calibrations in the probe Calibration history allows quick and easy drungs out of probes whole re-calibrating. The HGd[®] smart system records serial numbers, current calibration data, user ID, sample ID time, and date automatically in the data log for complete GLP translating.

Designed for demanding conditions Rugged, waterproof (IPGT) meter provides worry-ties, reliable operation in lab or field environment.

Convenient kit includes everything you need to start testing Meter kit includes, 4 AA batteries, quick-start guide, user manual, and documentation CD

Specifications

Automatic Buffer Recognition Color-coded 4 01, 7,00, 10 01 pH IUPAC 1,679, 4,005, 7,000, 10 01 2, 12 45 DIN 1,09,4 65, 9323 User-defined custom buffer sets

Baromatric Pressure Measurement For automatic compensation of DO when using an LDO or LBOD probe

Battery Requirements 4 88

Benchtop with stand

BOD5/CBOD resolution

Available when used with Hach WIMS BOD Manager software

Cable resistance correction Digital - not needed

Calibration curves display Calibration summary data logged and displayed

Calibration Intervals/Alerts/Reminder 2 hours to 7 days

Compliance CE WEEE

Conductivity Accuracy ± 8 5 % from (1µS/cm - 200 mS/cm)

Conductivity measurement 5 different stability modes Conductivity Measurement Range: 0 01 µS/cm to 200 mS/cm 0 01 µS/cm with 2 digits Conductivity resolution

Custom Calibration Standards User-defined standard sets Data Export

Download via USB connection to PC or flash stick. Automatically transfer entire data log or as readings are taken

Digital (intelligent) electrode inputs. 2

Dimensions (H x W x D) 7,8 in x 3 7 in x 1.4 in (197 mm x 95 mm x 36 mm)

Display readings from one or two probes
Simultaneous readings from two probes
HQ4dd orly)
pH pH, mV, temperature
Conductivity Conductivity, TUS, salinity, reststivity, temperature
LD0 disactived copyen, pressure, hemperature
LB00 disactived copyen, pressure, temperature
Sodium Sodium, mV, temperature

Display Lock Function Continuous measurement or press to read mode available with averaging function for LDO measurement.

Display Type

240 x 160 julip Distiguty readings from one or two probes pH, pH, mV, temperature Conductivity, Conductivity, TDS, salindy, resistavity temperature LDO disactived congress, pressure, temperature ORP/Redox mV, temperature Sodium, Sodium, mV, temperature

DO Measurement Range 0 01 to 20 mg/L (0 to 200%)

DO Resolution 0 01 mg/L

Fixed Buffer Selection (UPAC standards (DIN 19265) or Technical buffer (DIN 19267) or 4-7-19 series or user

M12 digital (1) for intelliCAL probes

Text messages displayed

mV Measurement at Stable Reading. 5 (auto) stabilization settings mV Resolution 0 1 mV

Operating Error Messages Operating Humidity

90 % relative humidity (non-condensing) Operating Interface

Operating Temperature 5 to 45 °C

ORP Electrode Calibration Predefined ORP standards (including Zobell's stitution) USB to PC / Sash stick

PC Data Transfer Software Included pH Measurement at stable reading 5 stabilization settings Printer Optional accessory Salinity Resolution 0 01 ppl

Warranty 3 years

Water Resisitance Meter Cesing 1 meter submersion for 30 minutes (iP67)

Weight. 0 74 lbs (0 335 kg)

2100P and 2100P IS **Portable Turbidimeter**

Features and Benefits

Laboratory Quality in a Portable Unit

The Hach 2100P and 2100P IS Portable Turbidimeters offer a level of performance previously possible only with laboratory instruments. Microprocessor-controlled operation and Hach's unique Ratio™ optics bring great accuracy, sensitivity, and reliability to field and in-plant testing.

Two Models for Specific Requirements

- 2100P Turbidimeter—Get fast, accurate turbidity testing in the field or the lab, over a wide range of samples. Compliant with USEPA Method 180.1 design criteria.
- 2100P IS Turbidimeter—Designed to meet international standards that mandate measurement using an LED light source.

The two-detector optical system compensates for color in the sample, light fluctuation, and stray light, enabling analysts to achieve laboratory-grade performance on a wide range of samples, even under difficult, onsite conditions.

DW = drinking water WW = wastewater municipal PW = pure water / power IW = industrial water E = environmental C = collections FB = food and beverage

The Hach 2100P and 2100P IS Portable Turbidimeters bring laboratory-level performance on-site, offering fast, accurate results and the ease-of-use analysts demand in the field. With a measurement range of 0 to 1000 NTU and a resolution of 0.01 NTU, the 2100P turbidimeter is ideal for regulatory monitoring, process control or field studies.

Specifications*

	2100P	2100P IS
Measurement Method	Nephelometric Ratio	
Regulatory	Meets EPA Method 180.1	Meets EN ISO 7027
Light Source	Tungsten lamp	Light-emitting diode (LED) @ 860 nm
Range	4	
Automatic Range Mode	0 to 1000 NTU	0 to 1000 FNU
Manual Range Selection	0 to 9.99, 0 to 99.9 and 0 to 1000 NTU	0 to 9.99, 0 to 99.9 and 0 to 1000 FNU
Accuracy	±2% of reading plus stray light	
Repeatability	±1% of reading, or 0.01 NTU, whichever is greater	±1% of reading, or 0.01 FNU, whichever is greater
Resolution	0.01 on lowest range	
Signal Averaging	Selectable on/off	7
Power Requirement	4 AA alkaline batteries or optional battery eliminator	
Battery Life, Typical	300 tests with signal average mode off	
	180 tests with signal average mode on	
Operating Temperature	0 to 50°C (32 to 122°F)	
Sample Required	15 mL (0.5 oz.)	
Sample Cells	60 x 25 mm (2.36 x 1 in.) borosilicate glass with screv	v caps
Dimensions	22.2 x 9.5 x 7.9 cm (8.75 x 3.75 x 3.12 in.)	
Weight	0.5 kg (1.1 lb.); shipping weight 2.7 kg (6 lb.)	
Warranty	2 years	

*Specifications subject to change without notice.

2100Q and 2100Q is Portable Turbidimeter

The Hach 2100Q and 2100Q is Portable Turbidimeters offer unsurpassed ease of use and accuracy in turbidity measurement. Only Hach offers this unique combination of advanced features, such as assisted calibration and simplified data transfer, and measurement innovation, giving you accurate results every time.

A

Features and Benefits

Easy Calibration and Verification

Hach 2100Q and 2100Q *is* Portable Turbidimeters provide confidence your measurements are right every time. On-screen assisted calibration and verification save you time and ensure accuracy. With an easy-to-follow interface, complicated manuals are not needed to perform routine calibrations. Single-standard RapidCal™ calibration offers a simplified solution for low level measurements.

Simple Data Transfer

Data transfer with the optional USB + Power Module is simple, flexible, and doesn't require additional software. All data can be transferred to the module and easily downloaded to your computer with a USB connection, providing superior data integrity and availability. With two different module options, you can customize connectivity and power to meet your unique needs.

Accurate for Rapidly Settling Samples

The Hach 2100Q Portable Turbidimeter incorporates an innovative Rapidly Settling Turbidity™ mode to provide accurate, repeatable measurements for difficult to measure, rapidly settling samples. An exclusive algorithm that

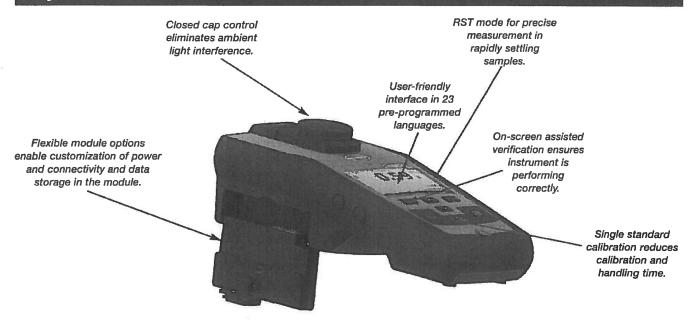
calculates turbidity based on a series of automatic readings eliminates redundant measurements and estimating.

Convenient Data Logging

Up to 500 measurements are automatically stored in the instrument for easy access and backup. Stored information includes: date and time, operator ID, reading mode, sample ID, sample number, units, calibration time, calibration status, error messages and the result.

Optical System for Precision in the Fleld

The two-detector optical system compensates for color in the sample, light fluctuation, and stray light, enabling analysts to achieve laboratory-grade performance on a wide range of samples, even under difficult site conditions.


Two Models for Specific Requirements

- 2100Q Turbidimeter—Compliant with USEPA Method 180.1 design criteria.
- 2100Q is Turbidimeter—Compliant with ISO 7027 design criteria.

DW = drinking water WW = wastewater municipal PW = pure water / power IW = industrial water E = environmental C = collections FB = food and beverage

Key Features

Specifications*

Measurement Method

Ratio turbidimetric determination using a primary nephelometric light scatter signal (90°) to the transmitted light scatter signal.

Regulatory

2100Q: Meets EPA Method 180.1 2100Q is: Meets ISO 7027

Light Source

2100Q: Tungsten filament lamp

2100Q is: Light-emitting diode (LED) @ 860 nm

Range

0 to 1000 NTU (FNU)

Accuracy

±2% of reading plus stray light from 0 to 1000 NTU

Repeatability

±1% of reading, or 0.01 NTU (FNU), whichever is greater

Resolution

0.01 NTU on lowest range

Stray Light

<0.02 NTU (FNU)

Signal Averaging

Selectable on/off

Detector

Silicon photovoltaic

Reading Modes (user selectable)

Normal (Push to Read) Signal Averaging Rapidly Settling Turbidity

Data Logger

500 records

Power Requirement

110-230 Vac, 50/60 Hz (with Power or USB+Power Module)

4 AA alkaline batteries

Rechargeable NiMH (for use with USB+Power Module)

Operating Conditions

Temperature: 0 to 50°C (32 to 122°F)
Relative Humidity: 0 to 90% @ 30°C,
0 to 80% @ 40°C, 0 to 70% @ 50°C, noncondensing

Storage Conditions

-40 to 60°C (-40 to 140°F), instrument only

Languages

English, French, German, Italian, Spanish, Portuguese (BR), Portuguese (PT), Bulgarian, Chinese, Czech, Danish, Dutch, Finnish, Greek, Hungarian, Japanese, Korean, Polish, Romanian, Russian, Slovenian, Swedish, Turkish

Interface

Optional USB

Instrument Enclosure Rating

IP67 (closed lid, battery compartment excluded)

Protection Class

Power Supply: Class II

Certification

CE certified

Sample Required

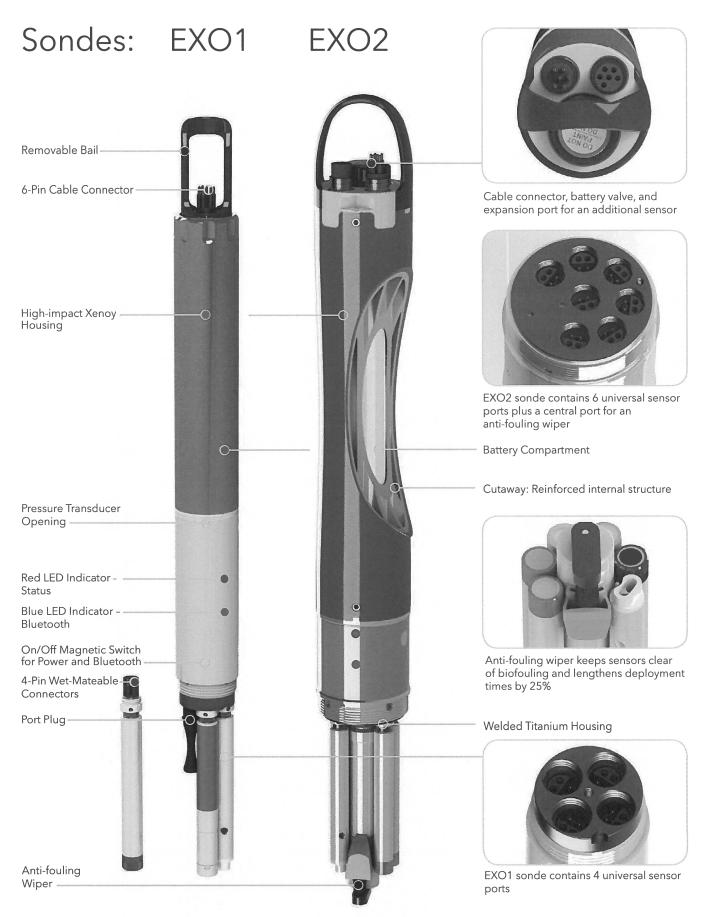
15 mL (0.3 oz.)

Sample Cells

60 x 25 mm (2.36 x 1 in.) borosilicate glass with screw cap

Dimensions

22.9 x 10.7 x 7.7 cm (9.0 x4.2 x 3.0 in.)


Weight

527 g (1.16 lb) without batteries

618 g (1.36 lb) with four AA alkaline batteries

Warranty

1 year

Instrument Specifications*

EXO1 Sonde						
Ports	4 sensor ports Peripheral port: 1 power communication	port				
Size	Diameter: 4.70 cm (1.85 in) Length: 64.77 cm (25.50 in)					
Weight		1.42 kg (3.15 lbs) with 4 probes, guard and batteries installed				
EXO2 Sonde						
Ports	7 sensor ports (6 ports available when ce Peripheral ports: 1 power communicatio					
Size	Diameter: 7.62 cm (3.00 in) Length: 71.10 cm (28.00 in)					
Weight	3.60 kg (7.90 lbs) with 5 probes, guard a	nd batteries installed				
Sondes						
Operating Temperature	-5 to 50°C					
Storage Temperature	-20 to 80°C (except 0 to 60°C for pH and	pH/ORP sensors)				
Depth Rating	0 to 250 m (0 to 820 ft)					
Communications	Computer Interface: Bluetooth wireless t Output Options: USB with signal output a	technology, RS-485, USB adapter (SOA); RS-232 & SDI-12 with DCP-SOA				
Sample Rate	Up to 4 Hz					
Battery Life	90 days**					
Data Memory	512 MB total memory; >1,000,000 logge	ed readings				
Sensors		Calculated Parameters				
Ammonium	ORP	Salinity				
Chloride	рН	Specific Conductance				
Conductivity	Temperature	Total Dissolved Solids				
Depth	Total Algae (Chlorophyll + BGA-PC or PE)	Total Suspended Solids				
Dissolved Oxygen	Turbidity					
Fluorescent Dissolved Organic Matter (fDOM)	Vented Level					
Nitrate						
EXO Handheld						
Size	Width: 12.00 cm (4.72 in) Height: 25.00 cm (9.84 in)					
Weight	0.71 kg (1.56 lbs) without batteries					
Operating System	Windows CE 5.0					
Operating Temperature	-10 to 50°C					
Storage Temperature	-20 to 80°C					
IP Rating	IP-67					
Data Memory	2 GB total memory; >2,000,000 data set	S				
Accessories						
Cables (vented and non-vented)	Flow cells	Sonde/sensor guard				
Carrying case	KOR software	Calibration cup				
DCP Signal Output Adapter	USB Signal Output Adapter	Anti-fouling components				
Warranty						
3 months	Replaceable reagent modules for ammo	onium, chloride, and nitrate				
1 Year	Optical DO membranes and replaceable	e reagent moldules for pH and pH/ORP				
2 Years	Cables; sonde bulkheads; handheld; cond electronics base for pH, pH/ORP, ammoniu	uctivity, temperature, depth, and optical sensors; m, chloride, and nitrate sensors; and accessories				

^{*} Specifications indicate typical performance and are subject to change. Please check EXOwater.com for up-to-date information.

EXO Bluetooth modules comply with Part 15C of FCC Rules and have FCC, CE Mark and C-tick approval. Bluetooth-type approvals and regulations can be country specific. Check local laws and regulations to insure that the use of wireless products purchased from Xylem are in full compliance.

^{**} Typically 90 days at 20°C at 15-minute logging interval; temperature/conductivity, pH/ORP, DO, and turbidity sensors installed on EXO1; or temperature/conductivity, pH/ORP, DO, total algae, and turbidity sensors installed with central wiper that rotates once per logging interval on EXO2. Battery life is heavily dependent on sensor configuration.

Sensor Specifications*

Sensor	Range	Accuracy*	Response	Resolution	
Ammonium ¹¹ (ammonia with pH sensor)	0 to 200 mg/L ¹	±10% of reading or 2 mg/L-N, w.i.g.	-	0.01 mg/L	
Barometer	375 to 825 mmHg	±1.5 mmHg from 0 to 50°C	_	0.1 mmHg	
Blue-green Algae Phycocyanin (PC) (part of Total Algae sensor)	0 to 100 RFU; 0 to 100 μg/L PC	Linearity: $R^2 > 0.999$ for serial dilution of Rhodamine WT solution from 0 to 100 µg/mL PC equivalents	T63<2 sec	0.01 RFU; 0.01 μg/L PC	
Blue-green Algae Phycoerythrin (PE) (part of Total Algae sensor)	0 to 100 RFU; 0 to 280 μg/L PE	Linearity: R ² > 0.999 for serial dilution of Rhodamine WT solution from 0 to 280 µg/mL PE equivalents	T63<2 sec	0.01 RFU; 0.01 µg/L PE	
Chloride ¹¹	0 to 1000 mg/L-Cl ²	±15% of reading or 5 mg/L-Cl, w.i.g.	-	0.01 mg/L	
Chlorophyll (part of Total Algae sensor)	0 to 400 μg/L Chl; 0 to 100 RFU	Linearity: $R^2 > 0.999$ for serial dilution of Rhodamine WT solution from 0 to 400 μ g/L Chl equivalents	T63<2 sec	0.01 μg/L Chl; 0.01 RFU	
Conductivity ³	0 to 200 mS/cm	0 to 100: ±0.5% of reading or 0.001 mS/cm, w.i.g.; 100 to 200: ±1% of reading	T63<2 sec	0.0001 to 0.01 mS/cm (range dependent)	
	0 to 10 m (0 to 33 ft)	±0.04% FS (±0.004 m or ±0.013 ft)			
Depth ⁴ (non-vented)	0 to 100 m (0 to 328 ft)	±0.04% FS (±0.04 m or ±0.13 ft)	T/2 .0	0.001 m (0.001 ft)	
(non vonced)	0 to 250 m (0 to 820 ft)	±0.04% FS (±0.10 m or ±0.33 ft)	T63<2 sec	(auto-ranging)	
Vented Level	0 to 10 m (0 to 33 ft)	±0.03% FS (±0.003 m or ±0.010 ft)			
Dissolved Oxygen	0 to 500% air saturation	0 to 200%: $\pm 1\%$ of reading or 1% saturation, w.i.g.; 200 to 500%: $\pm 5\%$ of reading ⁵	T/2 -F 6	0.1% air saturation	
Optical	0 to 50 mg/L	0 to 20 mg/L: ± 0.1 mg/L or 1% of reading, w.i.g.; 20 to 50 mg/L: $\pm 5\%$ of reading ⁵	T63<5 sec ⁶	0.01 mg/L	
fDOM	0 to 300 ppb Quinine Sulfate equivalents (QSE)	Linearity: R ² > 0.999 for serial dilution of 300 ppb QS solution Detection Limit: 0.07 ppb QSE	T63<2 sec	0.01 ppb QSE	
Nitrate ¹¹	0 to 200 mg/L-N ¹	±10% of reading or 2 mg/L-N, w.i.g.	_	0.01 mg/L	
ORP	-999 to 999 mV	±20 mV in Redox standard solutions	T63<5 sec ⁷	0.1 mV	
рН	0 to 14 units	± 0.1 pH units within $\pm 10^{\circ}$ C of calibration temp; ± 0.2 pH units for entire temp range ⁸	T63<3 sec ⁹	0.01 units	
Salinity (Calculated from Conductivity and Temperature)	0 to 70 ppt	±1.0% of reading or 0.1 ppt, w.i.g.	T63<2 sec	0.01 ppt	
Specific Conductance (Calculated from Cond. and Temp.)	0 to 200 mS/cm	±0.5% of reading or .001 mS/cm, w.i.g.	_	0.001, 0.01, 0.1 mS/cm (auto-scaling)	
Temperature	-5 to 50°C	-5 to 35°C: ±0.01°C ¹⁰ 35 to 50°C: ±0.05°C ¹⁰	T63<1 sec	0.001 °C	
Total Dissolved Solids (TDS) (Calculated from Conductivity and Temperature)	0 to 100,000 g/L Cal constant range 0.30 to 1.00 (0.64 default)	Not Specified	-	variable	
Total Suspended Solids (TSS) (Calculated from Turbidity and user reference samples)	0 to 1500 mg/L	Not Specified	T63<2 sec	variable	
Turbidity ¹¹	0 to 4000 FNU	0 to 999 FNU: 0.3 FNU or ±2% of reading, w.i.g.; 1000 to 4000 FNU: ±5% of reading ¹²	T63<2 sec	0 to 999 FNU: 0.01 FNU; 1000 to 4000 FNU: 0.1 FNU	

All sensors have a depth rating to 250 m (820 ft), except shallow and medium depth sensors and ISEs. EXO sensors are not backward compatible with 6-Series sondes.

* Specifications indicate typical performance and are subject to change. Please check EXOwater.com for up-to-date information.

Accuracy specification is attained immediately following calibration under controlled and stable environmental conditions. Performance in the natural environment may vary from quoted specification.

² 0-40°C ¹ 0-30°C w.i.g. = whichever is greater Accuracy specifications apply to conductivity levels of 0 to 100,000 µS/cm.
 Relative to calibration gases
 When transferred from air-saturated water to stirred deaerated water
 When transferred from water-saturated air to Zobell solution

- Within the environmental pH range of pH 4 to pH 10
 On transfer from water-saturated air to rapidly stirred air-saturated water at a specific conductance of 800 μS/cm at 20°C; T63<5 seconds on transfer from water-saturated air to slowly-stirred air-saturated water.
 Temperature accuracy traceable to NIST standards

11 Calibration: 1-, 2-, or 3-point, user-selectable 12 Specification is defined in AMCO-AEPA Standards

¹⁰⁻³⁰ C 20-40 C W.I.g. = wnicnever is greater 3 Outputs of specific conductance (conductivity corrected to 25°C) and total dissolved solids are also provided. The values are automatically calculated from conductivity according to algorithms found in *Standard Methods for the Examination of Water and Wastewater* (Ed. 1989).

FH950 Portable Velocity Meter with 20' Cable

Product #: FH950.10020 USD Price: \$4,585.00 Quantity

Ships within 2 weeks

Reduce manhours 50%

The step-by-step user interface simplifies programming, delivers real-time data, and downloads directly to PC allowing a single person to take the readings and eliminating post site visit manual data transfer from logbook to PC

Automatically calculates total discharge based on USGS and ISO methods

Reduces time to manually calculate and likelihood of errors

Real-time velocity graphed on color display

Visualize velocity trends quickly

Lowest maintenance solution on the market

Electromagnetic velocity sensor with no moving parts never requires mechanical maintenance

Lightweight, rugged portable meter

Only 1.5 pounds

What's in the box

FH950.1 System Includes:

- Portable Velocity Meter
- Electromagnetic Sensor with 20' cable
- Fabric Carrying Case
- Adjustable Meter Rod Mount
- Universal Sensor Mount
- Battery Charger with Domestic/International Plug Adapters
- USB Cable
- Lanyard
- Sensor Screw Kit
- Absorbent Wipe

Specifications

Accuracy 2:

 \pm 2% of reading \pm 0.05 ft/s (\pm 0.015 m/s) through the range of 0 to 10 ft/s

(0 to 3.04 ms/s); ± 4% of reading from 10 to 16 ft/s (3.04 to 4.87 m/s)

Battery Life:

heavy typical day use; 68°F (20°C)

Display: LCD:

Color, LCD 3.5 QVGA transflective (readable in direct sunlight)

Keypad:

Alpha-numerica

Operating Temperature Range:

-20 to 55 °C

Range:

to ft/s

Resolution:

Measurement Resolution - <10: 0.001; <100: 0.01; >100: 0.1

Storage Conditions:

-20 °C to 60 °C

Appendix D

NEORSD Chlorophyll a Sampling Field Sheet

				Collectors						
RM:				Time:						
Lat/Long:_										
Number of	Rocks:		Total Area Scra	ped:	cm ²	D:	0	1		
Diameter o	f individual s	crape	Area of individu	al scrape		Diameter to Ard Diameter (cm)				
			1			1.6	2.011			
			2			1.7	2.27			
			3			1.8	2.545			
	·		4			1.9	2.835			
			5			2.0	3.142			
			6			2.1	3.464			
			7			2.2	3.801			
	·		8			2.3	4.155			
9			9							
10			10			Total Sample V				
11			11		Filter 1	LABLynx ID				
12			12			Vol	ml			
13			13							
			14		Filter 2	LABLynx ID				
			15			Vol	ml			
			16							
			17		Filter 3	LABLynx ID				
			18			Vol	ml			
			19							
			20							
			21			Nater Column C		•		
			22		Filter 1	LABLynx ID				
			23			Vol	ml			
			24							
25			25		Filter 2	LABLynx ID				
			Total:			Vol	_ml			
					Filter 3	LABLynx ID				
						Vol	_ml			
Flow:	None	Low	Normal	Elevated		High				
Turbidity:	Clear	Low	Moderate*	High*						
*Explain										
Sky:	Overcast	Cloudy	Partly Cloudy	Mostly Cle	ar	Clear				
Canopy:	Open	Mostly Open	Partly Closed	Closed						

Narrow L R Moderate L R Wide L R

Riparian None

Downstream Channel Direction	Record two most predominate substrates with an X, and check all present.					
330° N 30° 60° 270° W E 90° 120° 120°	Riffle Run Reach Boulder/Slabs Bedrock Boulder/Slabs Cobble Gravel Sand Silt Hardpan Detritus Artificial					
Clinometer Left Bank° Right Bank°	Substrate OriginLimestoneTillsRip-rapSandstoneShaleWetlandsLacustrineHardpanCoal Fines					
Left Bank° Right Bank°	Silt HeavyModerateNormalNone					
Left Bank° Right Bank°	EmbeddednessExtensiveModerateNormalNone					
Stream Widthsmmm						

Length of Reach: _____m

Stream Drawing

Appendix E

State of New Hampshire Environmental Laboratory Accreditation Program Awards PRIMARY NH ELAP ACCREDITATION

to

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES of

CUYAHOGA HEIGHTS, OH

For the matrix, method and analytes listed on the latest Analyte List in accordance with the provisions on the 2009 TNI Standards and Env-C 300.

Certificate Number: 223819

Effective Date: 12/1/2019

Expiration Date: 11/30/2020

Laboratory ID: 2238

MORTHEASH 19/2019

Bill Hall

NH ELAP Program Manager

Method accreditation does not imply acceptance for NHDES compliance testing. Laboratory is required to use EPA-approved methods required by regulation. Continuing accreditation status is dependent on successful ongoing participation in the program. Customers may verify the laboratory's current accreditation status by calling (603) 271-2998 or by visiting the NH ELAP website (https://www.des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm).

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST ANALYTE LIST NUMBER: 223819-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES 4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

Analyte Code	Analyte Name	Effective Date	Expiration Date	Matrix	Category A	ccr. Type
Method Code: 202110	Method Ref: SM 9223 B (COLILERT QUAN	TI-TRAY)-2004	Revision:	Date: 2004		
2525	ESCHERICHIA COLI	12/01/2019	11/30/2020	N	MIC	NE
2500	TOTAL COLIFORMS	12/01/2019	11/30/2020	N	MIC	NE
Method Code: 100138	Method Ref: EPA 200.7		Revision: 4.4		Date: 1994	
1000	ALUMINUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1005	ANTIMONY, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1010	ARSENIC, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1015	BARIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1020	BERYLLIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1030	CADMIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1035	CALCIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1040	CHROMIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1050	COBALT, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1055	COPPER, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1070	IRON, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1075	LEAD, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1085	MAGNESIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1090	MANGANESE, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1100	MOLYBDENUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1105	NICKEL, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1125	POTASSIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1140	SELENIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1150	SILVER, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1155	SODIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1160	STRONTIUM,TOTAL	12/01/2019	11/30/2020	N	MET	NE
1165	THALLIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1175	TIN, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1180	TITANIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1185	VANADIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1190	ZINC, TOTAL	12/01/2019	11/30/2020	N	MET	NE
Method Code: 10014	Method Ref: EPA 200.8		Revision: 5.4		Date: 1994	
1000	ALUMINUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1005	ANTIMONY, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1010	ARSENIC, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1015	BARIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE

This analyte list supersedes all previously issued analyte lists. Method accreditation does not imply acceptance for NHDES compliance testing. Laboratory is required to use EPA-approved methods required by regulation. Continuing accreditation status is dependent on successful ongoing participation in the program. Customers may verify the laboratory's current accreditation status by calling (603) 271-2998 or by visiting the NH ELAP website (https://www.des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm).

Page 1 of 6

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST ANALYTE LIST NUMBER: 223819-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES 4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

1020	BERY	LLIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1030	CADI	MIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1035	CALC	IUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1040	CHRO	OMIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1050	COBA	ALT, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1055	COPF	PER, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1070	IRON	, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1075	LEAD	, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1085	MAG	NESIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1090	MAN	GANESE, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1100	MOL	YBDENUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1105	NICK	EL, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1125	POTA	SSIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1140	SELEI	NIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1150	SILVE	R, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1155	SODI	UM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1160	STRO	NTIUM,TOTAL	12/01/2019	11/30/2020	N	MET	NE
1165	THAL	LIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1175	TIN,	ГОТАL	12/01/2019	11/30/2020	N	MET	NE
1180	TITAI	NIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1185	VANA	ADIUM, TOTAL	12/01/2019	11/30/2020	N	MET	NE
1190	ZINC	TOTAL	12/01/2019	11/30/2020	N	MET	NE
Method Code: 10	036609	Method Ref: EPA 245.1		Revision: 3		Date: 1994	
1095	MER	CURY, TOTAL	12/01/2019	11/30/2020	N	MET	NE
Method Code: 10	237204	Method Ref: EPA 1631E		Revision:		Date: 2002	
1095	MER	CURY, TOTAL	12/01/2019	11/30/2020	N	MET	NE
Method Code: 20	066266	Method Ref: SM 3500-CR B-2011		Revision:		Date: 2011	
1045	CHRO	OMIUM VI	12/01/2019	11/30/2020	N	MET	NE
Method Code: 10	010409	Method Ref: EPA 160.4		Revision:		Date: 1971	
1970	RESI	DUE, VOLATILE	12/01/2019	11/30/2020	N	NMI	NE
Method Code: 10	011800	Method Ref: EPA 180.1		Revision: 2		Date: 1993	
2055	TURE	BIDITY	12/01/2019	11/30/2020	N	NMI	NE
Method Code: 10	053200	Method Ref: EPA 300.0		Revision: 2.1		Date: 1993	
1540	BRO	MIDE	12/01/2019	11/30/2020	N	NMI	NE
1575	CHLC	PRIDE	12/01/2019	11/30/2020	N	NMI	NE
1730	FLUC	PRIDE	12/01/2019	11/30/2020	N	NMI	NE
1810	NITR.	ATE AS N	12/01/2019	11/30/2020	N	NMI	NE

This analyte list supersedes all previously issued analyte lists. Method accreditation does not imply acceptance for NHDES compliance testing. Laboratory is required to use EPA-approved methods required by regulation. Continuing accreditation status is dependent on successful ongoing participation in the program. Customers may verify the laboratory's current accreditation status by calling (603) 271-2998 or by visiting the NH ELAP website (https://www.des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm).

Page 2 of 6

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST ANALYTE LIST NUMBER: 223819-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES 4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

1840	NITR	RITE AS N	12/01/2019	11/30/2020	N	NMI	NE
1870	ORTI	HOPHOSPHATE AS P	12/01/2019	11/30/2020	Ν	NMI	NE
2000	SULF	FATE	12/01/2019	11/30/2020	Ν	NMI	NE
Method Code: 100)55206	Method Ref: EPA 310.2		Revision:		Date: 1974	
1505	ALKA	ALINITY	12/01/2019	11/30/2020	Ν	NMI	NE
Method Code: 100	063602	Method Ref: EPA 350.1		Revision: 2		Date: 1993	
1515	AMN	MONIA	12/01/2019	11/30/2020	Ν	NMI	NE
Method Code: 100	065404	Method Ref: EPA 351.2		Revision: 2		Date: 1993	
1795	TOTA	AL KJELDAHL NITROGEN (TKN)	12/01/2019	11/30/2020	N	NMI	NE
Method Code: 100	067604	Method Ref: EPA 353.2		Revision: 2		Date: 1993	
1810	NITR	RATE AS N	12/01/2019	11/30/2020	N	NMI	NE
Method Code: 100	70005	Method Ref: EPA 365.1		Revision: 2		Date: 1993	
1870	ORTI	HOPHOSPHATE AS P	12/01/2019	11/30/2020	Ν	NMI	NE
1910	PHO	SPHORUS, TOTAL	12/01/2019	11/30/2020	Ν	NMI	NE
Method Code: 100	77404	Method Ref: EPA 410.4		Revision: 2		Date: 1993	
1565	COD		12/01/2019	11/30/2020	Ν	NMI	NE
Method Code: 100	79400	Method Ref: EPA 420.1		Revision:		Date: 1978	
1905	PHE	NOLICS, TOTAL	12/01/2019	11/30/2020	Ν	NMI	NE
Method Code: 100	81400	Method Ref: EPA 445		Revision: 1.2		Date: 1997	
9345	CHLC	OROPHYLLS	12/01/2019	11/30/2020	Ν	NMI	NE
Method Code: 102	261617	Method Ref: EPA 1664B		Revision:		Date: 2010	
1803	N-HE	EXANE EXTRACTABLE MATERIAL (O&G) [HEM]	12/01/2019	11/30/2020	Ν	NMI	NE
9500		EXANE EXTRACTABLE MATERIAL - SILICA GEL TREATED M-SGT)	12/01/2019	11/30/2020	N	NMI	NE
Method Code: 200)49416	Method Ref: SM 2540 B-2011		Revision:		Date: 2011	
1950	RESII	DUE, TOTAL (TS)	12/01/2019	11/30/2020	Ν	NMI	NE
Method Code: 200)50413	Method Ref: SM 2540 C-2011		Revision:		Date: 2011	
1955	RESII	DUE, FILTERABLE (TDS)	12/01/2019	11/30/2020	Ν	NMI	NE
Method Code: 200	51212	Method Ref: SM 2540 D-2011		Revision:		Date: 2011	
1960	RESII	DUE, NON-FILTERABLE (TSS)	12/01/2019	11/30/2020	N	NMI	NE
Method Code: 200	52215	Method Ref: SM 2540 F-2011		Revision:		Date: 2011	
1965	RESII	DUE, SETTLEABLE	12/01/2019	11/30/2020	N	NMI	NE
Method Code: 200)53127	Method Ref: SM 2550 B		Revision: 22ND ED		Date: 2010	
2030	TEM	PERATURE	12/01/2019	11/30/2020	N	NMI	NE
Method Code: 200	080426	Method Ref: SM 4500-CL E-2011		Revision:		Date: 2011	
1940	CHLC	ORINE, RESIDUAL TOTAL	12/01/2019	11/30/2020	Ν	NMI	NE
Method Code: 200	85216	Method Ref: SM 4500-CL C-2011		Revision:		Date: 2011	
1575	CHLC	ORIDE	12/01/2019	11/30/2020	Ν	NMI	NE

This analyte list supersedes all previously issued analyte lists. Method accreditation does not imply acceptance for NHDES compliance testing. Laboratory is required to use EPA-approved methods required by regulation. Continuing accreditation status is dependent on successful ongoing participation in the program. Customers may verify the laboratory's current accreditation status by calling (603) 271-2998 or by visiting the NH ELAP website (https://www.des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm).

Page 3 of 6

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST ANALYTE LIST NUMBER: 223819-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES 4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

Method Code: 20	0097227	Method Ref: SM 4500-CN G-2011		Revision:		Date: 2011	
1510	CYAN	NIDE, AMENABLE	12/01/2019	11/30/2020	N	NMI	NE
Method Code: 20	102414	Method Ref: SM 4500-F C-2011		Revision:		Date: 2011	
1730	FLUC	DRIDE	12/01/2019	11/30/2020	N	NMI	NE
Method Code: 20	105220	Method Ref: SM 4500-H+ B-2011		Revision:		Date: 2011	
1900	HYDF	ROGEN ION (PH)	12/01/2019	11/30/2020	N	NMI	NE
Method Code: 20	113115	Method Ref: SM 4500-NO2 B-2011		Revision:		Date: 2011	
1840	NITR	ITE AS N	12/01/2019	11/30/2020	N	NMI	NE
Method Code: 20	135266	Method Ref: SM 5210 B-2011		Revision:		Date: 2011	
1530	BIOC	CHEMICAL OXYGEN DEMAND (BOD)	12/01/2019	11/30/2020	N	NMI	NE
1555	CARE	BONACEOUS BIOLOGICAL OXYGEN DEMAND	12/01/2019	11/30/2020	N	NMI	NE
Method Code: 20	137820	Method Ref: SM 5310 B-2011		Revision:		Date: 2011	
2040	TOTA	AL ORGANIC CARBON (TOC)	12/01/2019	11/30/2020	N	NMI	NE
Method Code: 60	0007150	Method Ref: LACHAT 10-204-00-1-X		Revision:		Date: NOV-	00
1645	CYAN	NIDE, TOTAL	12/01/2019	11/30/2020	N	NMI	NE
Method Code: 60	0031405	Method Ref: OIA 1677		Revision:		Date: 2004	
1523	CYAN	NIDE, AVAILABLE	12/01/2019	11/30/2020	N	NMI	NE
Method Code: 10	133207	Method Ref: SW-846 3005A		Revision: 1		Date: 1992	
1438	PREC	CONCENTRATION UNDER ACID	12/01/2019	11/30/2020	N	PRE	NE
Method Code: 10	133605	Method Ref: SW-846 3010A		Revision: 1		Date: 1992	
1420	НОТ	PLATE ACID DIGESTION (HNO3 + HCL)	12/01/2019	11/30/2020	N	PRE	NE
Method Code: 10	133809	Method Ref: SW-846 3015		Revision:		Date: 1994	
1430	MICF	ROWAVE-ASSISTED ACID DIGESTION OF TCLP EXTRAC	TS 12/01/2019	11/30/2020	Ν	PRE	NE
Method Code: 10	214207	Method Ref: EPA 1000.0 - FATHEAD MINNO DAILY	W, 7-DAY CHRONIC,	Revision:		Date: 2002	
3470	IC25	(ON) GROWTH	12/01/2019	11/30/2020	N	TOX	NE
3475	NOE	C (GROWTH)	12/01/2019	11/30/2020	N	TOX	NE
3465	NOE	C (SURVIVAL)	12/01/2019	11/30/2020	N	TOX	NE
Method Code: 10	253040	Method Ref: EPA 1002.0 - CERIODAPHNIA D CHRONIC,	UBIA, 3-BROOD	Revision:		Date: 2002	
3480	IC25	REPRODUCTION	12/01/2019	11/30/2020	N	TOX	NE
3465	NOE	C (SURVIVAL)	12/01/2019	11/30/2020	N	TOX	NE
3485		C REPRODUCTION	12/01/2019	11/30/2020	N	TOX	NE
Method Code: 10		Method Ref: EPA 200.7	12/01/2015	Revision: 4.4		Date: 1994	IVL
1000		MINUM, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1005		MONY, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1010		ENIC, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1015		UM, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1020	BERY	'LLIUM, TOTAL	12/01/2019	11/30/2020	SC	MET	NE

This analyte list supersedes all previously issued analyte lists. Method accreditation does not imply acceptance for NHDES compliance testing. Laboratory is required to use EPA-approved methods required by regulation. Continuing accreditation status is dependent on successful ongoing participation in the program. Customers may verify the laboratory's current accreditation status by calling (603) 271-2998 or by visiting the NH ELAP website (https://www.des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm).

Page 4 of 6

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST ANALYTE LIST NUMBER: 223819-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES 4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

1030	CADM	IUM, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1035	CALCI	JM, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1040	CHRO	MIUM, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1050	COBA	LT, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1055	COPPE	ER, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1070	IRON,	TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1075	LEAD,	TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1085	MAGN	IESIUM, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1090	MANG	GANESE, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1100	MOLY	BDENUM, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1105	NICKE	L, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1125	POTAS	SSIUM, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1140	SELEN	IUM, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1150	SILVEF	R, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1155	SODIU	M, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1160	STRON	NTIUM,TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1165	THALL	IUM, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1175	TIN, T	OTAL	12/01/2019	11/30/2020	SC	MET	NE
1180	TITAN	IUM, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1185	VANA	DIUM, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
1190	ZINC,	TOTAL	12/01/2019	11/30/2020	SC	MET	NE
Method Code: 1003	36609	Method Ref: EPA 245.1		Revision: 3		Date: 1994	
1095	MERC	URY, TOTAL	12/01/2019	11/30/2020	SC	MET	NE
Method Code: 1006	53602	Method Ref: EPA 350.1		Revision: 2		Date: 1993	
1515	AMM	AINC	12/01/2019	11/30/2020	SC	NMI	NE
Method Code: 1006	55404	Method Ref: EPA 351.2		Revision: 2		Date: 1993	
1795	TOTAL	. KJELDAHL NITROGEN (TKN)	12/01/2019	11/30/2020	SC	NMI	NE
Method Code: 1007	70005	Method Ref: EPA 365.1		Revision: 2		Date: 1993	
1910	PHOSE	PHORUS, TOTAL	12/01/2019	11/30/2020	SC	NMI	NE
Method Code: 2000)5270	Method Ref: SM 2540 G-2011		Revision:		Date: 2011	
1947	RESID	UE, FIXED	12/01/2019	11/30/2020	SC	NMI	NE
1950	RESID	UE, TOTAL (TS)	12/01/2019	11/30/2020	SC	NMI	NE
1970	RESID	UE, VOLATILE	12/01/2019	11/30/2020	SC	NMI	NE
Method Code: 1013	35805	Method Ref: SW-846 3051		Revision: 0		Date: 1994	
1451	MICRO	DWAVE DIGESTION OF SOLIDS (HNO3)	12/01/2019	11/30/2020	SC	PRE	NE

This analyte list supersedes all previously issued analyte lists. Method accreditation does not imply acceptance for NHDES compliance testing. Laboratory is required to use EPA-approved methods required by regulation. Continuing accreditation status is dependent on successful ongoing participation in the program. Customers may verify the laboratory's current accreditation status by calling (603) 271-2998 or by visiting the NH ELAP website (https://www.des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm).

Page 5 of 6

29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2998

PRIMARY ACCREDITATION ANALYTE LIST ANALYTE LIST NUMBER: 223819-A

NORTHEAST OHIO REGIONAL SEWER DISTRICT ANALYTICAL SERVICES 4747 EAST 49TH STREET

CUYAHOGA HEIGHTS OH 44125 216-641-6000 Lab ID: 2238

NORTHEAST 11/19/2019

Bill Hal

NH ELAP Program Manager Issue Date: 11/19/2019

Matrix Legend: AE=Air; BT=Tissue; D=Drinking Water; N=Non-Potable Water; SC=Solid and Chemical Materials

Category Legend: MIC=Microbiology; MET=Metals; NMI=Non-Metal Inorganics; PRE=Preparation; VOC=Volatile Organic Compounds; SBN=SVOC-BNA; SHE=SVOC-Herbicides; SNO=SVOC-NOS; SPC=SVOC-PCB; SPE=SVOC-Pesticides; RAD=Radiochemistry; WET=Wet

Accreditation Legend: NE=NELAP; NH=NH State Certification; CE=State Certification; IN=Interim (NELAP); WI=Withdrawn; AP=Applied; RE=Revoked; SU=Suspended

This analyte list supersedes all previously issued analyte lists. Method accreditation does not imply acceptance for NHDES compliance testing. Laboratory is required to use EPA-approved methods required by regulation. Continuing accreditation status is dependent on successful ongoing participation in the program. Customers may verify the laboratory's current accreditation status by calling (603) 271-2998 or by visiting the NH ELAP website (https://www.des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm).

Page 6 of 6

Appendix F

May 5, 2020

Mr. Seth Hothem Supervisor of Environmental Assessment Northeast Ohio Regional Sewer District 4747 East 49th Street Cuyahoga Heights, Ohio 44125

Re: 2020 Benthic Services

Dear Mr. Hothem:

This letter is to acknowledge that I am responsible for the identification of benthic macroinvertebrates for the following Northeast Ohio Regional Sewer District Study Plans:

- 2020 Cuyahoga River Environmental Monitoring
- 2020 Euclid Creek Environmental Monitoring
- 2020 Rocky River Environmental Monitoring
- 2020 Mayfield Sand Ridge Golf Club Pre-Restoration Monitoring

It is understood that an Ohio Environmental Protection Agency Level 3 Qualified Data Collector Certification for Benthic Macroinvertebrate, with the specialty of identification, is required to perform these tasks and that I am responsible for maintaining my Level 3 QDC Certification during the term of these Study Plans.

In addition, I have not been convicted nor pleaded guilty to a Violation of section 2911.21 of the Revised Code (criminal trespass) or a substantially similar municipal ordinance within the previous five years.

Sincerely,

Bert Remley

Senior Taxonomist

Bremley@thirdrockconsultants.com

albert W. Kemley I

January 17, 2020

Mr. Seth Hothem Supervisor of Environmental Assessment Northeast Ohio Regional Sewer District 4747 East 49th Street Cuyahoga Heights, Ohio 44125

Dear Mr. Hothem:

This letter is to acknowledge that I am responsible for assisting the Northeast Ohio Regional Sewer District's Water Quality and Industrial Surveillance Division in conducting chemical water quality assessments for the 2020 Cuyahoga River, Rocky River, Euclid Creek, and Lake Erie Nutrient Environmental Monitoring Project Study Plans.

It is understood that an Ohio Environmental Protection Agency Level 3 Qualified Data Collector Certification for Chemical Water Quality Assessment is required to perform these tasks and that I am responsible for maintaining my Level 3 QDC Certification during the term of these Study Plans.

In addition, I have not been convicted nor pleaded guilty to a Violation of Section 2911.21 of the Revised Code (criminal trespass) or a substantially similar municipal ordinance within the previous five years.

Sincerely,

Kelsey Amidon

Stormwater Inspector

Northeast Ohio Regional Sewer District

4747 East 49th Street

Cuyahoga Heights, Ohio, 44125

January 17, 2020

Mr. Seth Hothem Supervisor of Environmental Assessment Northeast Ohio Regional Sewer District 4747 East 49th Street Cuyahoga Heights, Ohio 44125

Dear Mr. Hothem:

This letter is to acknowledge that I am responsible for assisting the Northeast Ohio Regional Sewer District's Water Quality and Industrial Surveillance Division in conducting stream habitat assessments using the Qualitative Habitat Evaluation Index for the 2020 Cuyahoga River, Rocky River, and Euclid Creek Environmental Monitoring Project Study Plans.

It is understood that an Ohio Environmental Protection Agency Level 3 Qualified Data Collector Certification for Stream Habitat Assessment is required to perform these tasks and that I am responsible for maintaining my Level 3 QDC Certification during the term of these Study Plans.

In addition, I have not been convicted nor pleaded guilty to a Violation of Section 2911.21 of the Revised Code (criminal trespass) or a substantially similar municipal ordinance within the previous five years.

Sincerely,

Jonathan Brauer

Stormwater Inspector

Northeast Ohio Regional Sewer District

4747 East 49th Street

Cuyahoga Heights, Ohio, 44125

January 17, 2020

Mr. Seth Hothem Supervisor of Environmental Assessment Northeast Ohio Regional Sewer District 4747 East 49th Street Cuyahoga Heights, Ohio 44125

Dear Mr. Hothem:

This letter is to acknowledge that I am responsible for assisting the Northeast Ohio Regional Sewer District's Water Quality and Industrial Surveillance Division in conducting stream habitat assessments using the Qualitative Habitat Evaluation Index for the 2020 Cuyahoga River, Rocky River, and Euclid Creek Environmental Monitoring Project Study Plans.

It is understood that an Ohio Environmental Protection Agency Level 3 Qualified Data Collector Certification for Stream Habitat Assessment is required to perform these tasks and that I am responsible for maintaining my Level 3 QDC Certification during the term of these Study Plans.

In addition, I have not been convicted nor pleaded guilty to a Violation of Section 2911.21 of the Revised Code (criminal trespass) or a substantially similar municipal ordinance within the previous five years.

Sincerely,

Donna Friedman

Watershed Team Leader

Northeast Ohio Regional Sewer District

3900 Euclid Avenue

Cleveland, Ohio, 44115

Appendix G

Appendix H

References

- Chlorophyll a Sampling and Field Filtering Standard Operating Procedure (SOP-EA001-00)
- EPA New England- Region 1. (2005). Standard operating procedure for calibration and field measurement procedures for the YSI Model 6-Series Sondes and Data Logger (Including: temperature, pH, specific conductance, turbidity, dissolved oxygen, chlorophyll, rhodamine WT, ORP, and barometric pressure) (7th Revision). North Chelmsford, MA: The Office of Environmental Measurement and Evaluation, Ecosystem Assessment- Ecology Monitoring Team.
- Ohio Environmental Protection Agency. (1987a). Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters (Updated January 1988; September 1989; November 2006; August 2008; May 2015). Columbus, OH: Division of Water Quality Monitoring and Assessment.
- Ohio Environmental Protection Agency. (1987b). Biological criteria for the protection of aquatic life: Volume III. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities (Updated September 1989; March 2001; November 2006; August 2008; September 2015; June 2015). Columbus, OH: Division of Water Quality Monitoring and Assessment.
- Ohio Environmental Protection Agency. (1997). Draft. Biological Criteria for the Protection of Aquatic Life: Volume IV: Fish and Macroinvertebrate Indicies for Ohio's Lake Erie Nearshore Waters, Harbors, and Lacustuaries. Columbus, OH: Division of Surface Water, Ecological Assessment Unit.
- Ohio Environmental Protection Agency. (2003). *Total Maximum Daily Load for the Lower Cuyahoga River*. Columbus, OH: Division of Surface Water.
- Ohio Environmental Protection Agency. (2006). *Methods for assessing habitat in flowing waters: using the Qualitative Habitat Evaluation Index (QHEI)*. (Ohio EPA Technical Bulletin EAS/2006-06-1). Columbus, OH: Division of Surface Water; Division of Ecological Assessment Section.
- Ohio Environmental Protection Agency. (2010). *Methods of Assessing Habitat in Lake Erie Shoreline Waters Using the Qualitative Habitat Evaluation Index (QHEI) Approach (Version 2.1)*. Columbus, OH: Division of Surface Water.
- Ohio Environmental Protection Agency. (2015). *Proposed Stream Nutrient Assessment Procedure*. Columbus, OH: Division of Surface Water, Ohio EPA Nutrients Technical Advisory Group.

- Ohio Environmental Protection Agency. (2018a). Surface Water Field Sampling Manual for water quality parameters and flow. Columbus, Ohio: Division of Surface Water.
- Ohio Environmental Protection Agency. (2018b). *Ohio 2018 Integrated Water Quality Monitoring and Assessment Report.* Columbus, Ohio: Division of Surface Water.
- Ohio Environmental Protection Agency. (2018c). *State of Ohio Water Quality Standards Ohio Administrative Code Chapter 3745-1* (Revision: May 1, 2018). Columbus, OH: Division of Surface Water; Standards and Technical Support Section.